Math, asked by sajan6491, 11 hours ago

  \large\displaystyle  \bf\red {\int_{0}^{ \frac{1}{2} }  \frac{ \Gamma(1 + x) \Gamma(1 - x)}{ \Gamma( \frac{1}{2} + x) \Gamma( \frac{1}{2} - x)  }  \: dx}

Answers

Answered by testingpurpose152001
1

Answer:

Step-by-step explanation:

We know that,

1)~~\Gamma({n+1}) = {n}\Gamma{n}\\2)~~\Gamma(n).\Gamma(1-n) = \frac{\pi}{sin{n\pi}} , 0 < n < 1 (\text{Duplication formula})

Now,

\Gamma(1+x)\cdot \Gamma(1-x)\\  = x\Gamma{x}\cdot \Gamma(1-x)\\ = x\cdot \frac{\pi}{sin{x\pi}}\quad             (~\because~0 < x < \frac{1}{2}~)

\text{and}~~ \Gamma(\frac{1}{2} +x)\cdot \Gamma(\frac{1}{2} - x)\\= \Gamma(\frac{1}{2} +x)\cdot \Gamma(1-(\frac{1}{2} + x))\\= \frac{\pi}{sin{(\frac{1}{2}+x)\pi}}\\= \frac{\pi}{sin{(\frac{\pi}{2}+x\pi)}}\\= \frac{\pi}{cos{x\pi}}

Therefore,

\large\displaystyle \bf\red {\int_{0}^{ \frac{1}{2} } \frac{ \Gamma(1 + x) \Gamma(1 - x)}{\Gamma(\frac{1}{2}+x) \Gamma(\frac{1}{2}-x)} dx

= \int\limits^\frac{1}{2}_ 0 \frac{x\cdot \frac{\pi}{sin{x\pi}}}{\frac{\pi}{cos{x\pi}}} \, dx

= \int\limits^\frac{1}{2}_0 {x cot{x\pi}} \,dx

= \frac{\log(2)}{2\pi}

Answered by Anonymous
2

\begin{gathered} \sf \red{1)~~\Gamma({n+1}) = {n}\Gamma{n}}\\ \sf \red{2)~~\Gamma(n).\Gamma(1-n) = \frac{\pi}{sin{n\pi}} , 0 < n < 1 (\text{Duplication formula})}\end{gathered}

Now,

\begin{gathered}\sf \red {\Gamma(1+x)\cdot \Gamma(1-x)}\\  \sf \red{= x\Gamma{x}\cdot \Gamma(1-x)}\\  \sf \red{= x\cdot \frac{\pi}{sin{x\pi}}\quad (~\because~0 < x < \frac{1}{2}~)}\end{gathered}

\begin{gathered}\sf  \red{\text{and}~~ \Gamma(\frac{1}{2} +x)\cdot \Gamma(\frac{1}{2} - x)}\\ \sf \red{= \Gamma(\frac{1}{2} +x)\cdot \Gamma(1-(\frac{1}{2} + x))}\\ \sf \red{= \frac{\pi}{sin{(\frac{1}{2}+x)\pi}}}\\ \sf \red{= \frac{\pi}{sin{(\frac{\pi}{2}+x\pi)}}} \\  \sf \red{= \frac{\pi}{cos{x\pi}}}\end{gathered}

Therefore,

\large\displaystyle \bf\red {\int_{0}^{ \frac{1}{2} } \frac{ \Gamma(1 + x) \Gamma(1 - x)}{\Gamma(\frac{1}{2}+x) \Gamma(\frac{1}{2}-x)} dx}

 \displaystyle \sf \red{= \int\limits^\frac{1}{2}_ 0 \frac{x\cdot \frac{\pi}{sin{x\pi}}}{\frac{\pi}{cos{x\pi}}} \, dx}

 \displaystyle \sf \red{= \int\limits^\frac{1}{2}_0 {x cot{x\pi}} \,dx}

 \sf \red{= \frac{\log(2)}{2\pi}}

Similar questions