Math, asked by Anonymous, 7 months ago

\large \displaystyle\lim_{ x   \rightarrow  1  }  \left( \frac{  \displaystyle\int_{ 0  }^{ (x-1)  ^ { 2  }    }  \cos (  t   )    d t     }{ (x-1) \sin (  x-1   )    }   \right)

A challenge for all brainly stars and moderators...​

Answers

Answered by Anonymous
4

\bf{Hello\:\: Mate\:\: !!!!!

\bf{Answer\:\::}

\bf{\lim _{x\to \:1}\left(\dfrac{\int _0^{\left(x-1\right)^2}\cos \left(t\right)dt}{\left(x-1\right)\sin \left(x-1\right)}\right)=0}

\bf{Explanation\:\::}

\bf{Given\:\::}

\bf{\lim _{x\to \:1}\left(\dfrac{\int _0^{\left(x-1\right)^2}\cos \left(t\right)dt}{\left(x-1\right)\sin \left(x-1\right)}\right)}

\rule{250}{6}

\bf{\int _0^{\left(x-1\right)^2}\cos \left(t\right)dt=\sin \left(\left(x-1\right)^2\right)}

=\bf{\lim _{x\to \:1}\left(\dfrac{\sin \left(\left(x-1\right)^2\right)}{\left(x-1\right)\sin \left(x-1\right)}\right)}

\bf{\lim _{x\to \:1}\left(\dfrac{\sin \left(\left(x-1\right)^2\right)}{\left(x-1\right)\sin \left(x-1\right)}\right)=0}

\bf{SO\:\:OUR\:\:ANSWER\:\:TO\:\:QUESTION :}

\bf{\lim _{x\to \:1}\left(\dfrac{\int _0^{\left(x-1\right)^2}\cos \left(t\right)dt}{\left(x-1\right)\sin \left(x-1\right)}\right)=0}

Answered by BrainlyEmpire
24

SOLUTION:-

m-10, a= 20, b = 0.8 The period under simple

harmonic motion is 4 seconds.42

x-lcos (t) dt =0

limx+1 (x - 1) sin(x-; 1)

Given:-

rlx-1)2 cos (t) dt

(x-1) sin (x 1)

limx1d = ae 2 cos4m

2 d 20e 201 cos _(0.8)

4(10F0.64

d 200OSti 2010 cos

=400

ANSWER-✔️............

Similar questions