Math, asked by Anonymous, 7 days ago

 \large{\displaystyle \red{  \tt\int_{0}^{1}  \frac{x  \ln^{2}(x)  }{1 +  {x}^{2} } dx  }}

Answers

Answered by sajan6491
4

{\displaystyle \red{ \tt I = \int_{0}^{1} \frac{x \ln^{2}(x) }{1 + {x}^{2} } dx }}

{\displaystyle \red{ \tt  = \frac{1}{2}  \int_{0}^{1} \frac{x {}^{ \frac{1}{2} } \ln^{2}(x {}^{ \frac{1}{2} } ) }{1 + {x}^{} }  \frac{dx}{ {x}^{ \frac{1}{2} } }  }}

{\displaystyle \red{ \tt  = \frac{1}{8}  \int_{0}^{1} \frac{\ln^{2}(x)}{ {1 + x}^{ \frac{}{} } }dx  }}

{\displaystyle \red{ \tt  = \frac{1}{8} \sum_{k = 0}^{ \infty }  ( - 1) {}^{k}  \int_{0}^{1} {x}^{k} \ln^{2}(x)dx  }}

{\displaystyle \red{ \tt  = \frac{1}{8} \sum_{k = 0}^{ \infty }  ( - 1)  {}^{k} \frac{( - 1 {)}^{2} 2!}{(k + 1 {)}^{3} }}}

{\displaystyle \red{ \tt  = \frac{1}{4} \sum_{k = 1}^{ \infty }  \frac{( - 1 {)}^{k - 1}}{k{}^{3} }}}

 \tt \red{ =  \dfrac{1}{4}\eta(3) }

 \tt \red{  = \dfrac{3}{16} \zeta(3) }

Similar questions