Math, asked by sajan6491, 14 hours ago

 \large \displaystyle  \sf\int_{0}^{ \infty }  \frac{ {r}^{n - 1} }{( {r}^{2}  + 1) ^{ \frac{n + 2}{2} } }

Answers

Answered by XxDashingGirlxX
59

\large{\boxed{\mathtt{\fcolorbox{black}{pink}{꧁Question꧂}}}}

 \large \displaystyle \sf\int_{0}^{ \infty } \frac{ {r}^{n - 1} }{( {r}^{2} + 1) ^{ \frac{n + 2}{2} } }

\large{\underline{\mathtt{\red{♡︎A}\pink{N}\green{S}\blue{W}\red{E}\purple{R♡︎}}}}

Refer to the attachment!

Attachments:
Answered by IamIronMan0
67

Answer:

 \huge \green{ \frac{1}{n} }

Step-by-step explanation:

\displaystyle \sf\int_{0}^{ \infty } \frac{ {r}^{n - 1} }{( {r}^{2} + 1) ^{ \frac{n + 2}{2} } }dr \\  \\  = \displaystyle \sf\int_{0}^{ \infty } \frac{ {r}^{n - 1} }{( {r}^{2} ) ^{ \frac{n + 2}{2} } (1+  \frac{1}{ { r}^{2} } ) ^{ \frac{n + 2}{2} } }dr \\  \\  = \displaystyle \sf\int_{0}^{ \infty } \frac{ {r}^{n - 1} }{ {r}^{n + 2} ( 1+  \frac{1}{ {r}^{2} } ) ^{ \frac{n + 2}{2} } } dr\\  \\  = \displaystyle \sf\int_{0}^{ \infty } \frac{ 1 }{ {r}^{3} ( 1 +  \frac{1}{ {r}^{2} } ) ^{ \frac{n + 2}{2} } }dr \\  \\ put \:  \: 1 +  \frac{1}{ {r}^{2} }  = x \implies \:  \frac{ - 2dr}{ {r}^{3} }  = dx \\  \\  =   \displaystyle \sf\int_{ \infty}^{ 1} \frac{ - dx}{2( {x})^{ \frac{n + 2}{2} } }  \\  \\  =   \frac{1}{2} \bigg[ \frac{x {}^{  - \frac{n + 2}{2} + 1 } }{ -  \frac{n + 2}{2} + 1 }  \bigg]  _{ \infty }^{ 1}  \\  \\  =   - \frac{1}{2}  \bigg[ \frac{1 - 0} { \frac{ - n  -  2 + 2}{2} }\bigg] \\  \\  =  -  \frac{1}{2}  \times  \frac{2}{ - n}  =  \frac{1}{n}

Similar questions