Math, asked by 0neAboveAll, 2 months ago

 \large \mathbb \blue{ \fcolorbox{blue}{black}{   \:  \:⫷ ⫷ \:  \: Q  : U  :E : S : T : I : O : N  \:  \:  ⫸⫸ \:   }}


Solve the quadratic equation x²+7x-60=0 by Quadratic formula method.​​

Answers

Answered by OoINTROVERToO
4

GIVEN

x² + 7x - 60

Using quadratic formula

 \boxed{ \red { \pmb{x = \frac{ -b±√b²-4ac}{2a}}}}

Here, a = 1 , b = 7 & c = -60

 \bf \:  \: x= \cfrac{ -7± \sqrt{7²-4(1)(-60)}}{2(1)}

 \bf \: x=  \cfrac{-7± \sqrt{49+240}}{2}

 \bf \: x= \cfrac{ -7±√289}{2}

Discriminant, b²- 4ac is greater than zero,

  • That means there will be two real & distinct roots.

 \bf \: x= \cfrac{ -7±17}{2}

 \large \boxed{ \bold{ \blue{x= 5  \:  \: or  \: -12}}}

Answered by Anonymous
5

x² −7x−60=0

or, x²−12x+5x−60=0

or, x(x−12)+5(x−12)=0

or, (x−12)(x+5)=0

or, x=12,−5.

Similar questions