Math, asked by XxItsDivYanShuxX, 3 months ago

\large{\mathcal{\colorbox{gold}{\red{Prove the given integral.️}}}}

\boxed{\red{\displaystyle\int_{-1}^1 \dfrac{dx}{\sqrt{1-x^2}} = \pi∫}}

Answers

Answered by Anonymous
5

Answer:

Hope it helps!! Mark this answer as brainliest if u found it useful and follow me for quick and accurate answers...

Step-by-step explanation:

We \:  \:  know \:  \:  that \\  \\ \displaystyle\longrightarrow\int\dfrac{dx}{\sqrt{1-x^2}}=\sin^{-1}x \\  \\ So \\  \\ \displaystyle\longrightarrow\int\limits_{-1}^1\dfrac{dx}{\sqrt{1-x^2}}=\left[\sin^{-1}x\right]_{-1}^1 \\  \\ \displaystyle\longrightarrow\int\limits_{-1}^1\dfrac{dx}{\sqrt{1-x^2}}=\sin^{-1}(1)-\sin^{-1}(-1)\\  \\ \displaystyle\longrightarrow\int\limits_{-1}^1\dfrac{dx}{\sqrt{1-x^2}}=\dfrac{\pi}{2}-\left(-\dfrac{\pi}{2}\right) \\  \\ \displaystyle\longrightarrow\underline{\underline{\int\limits_{-1}^1\dfrac{dx}{\sqrt{1-x^2}}=\pi}} \\ \\ OR \\  \\ Let \:  \:  us \:  \:  be \:  \:  given  \:  \: to \:  \:  find, \\  \\\displaystyle\longrightarrow I=\int\limits_{-1}^1\dfrac{dx}{\sqrt{1-x^2}} \\  \\ Put \\  \\ \longrightarrow x=\sin\theta \\  \\ \longrightarrow dx=\cos\theta\ d\theta \\  \\ \longrightarrow x=-1\quad\implies\quad\theta=-\dfrac{\pi}{2} \\  \\ \longrightarrow x=1\quad\implies\quad\theta=\dfrac{\pi}{2} \\  \\ Then \:  \:  the \:  \:  integral  \:  \: becomes, \\  \\ \displaystyle\longrightarrow I=\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\dfrac{\cos\theta\ d\theta}{\sqrt{1-\sin^2\theta}} \\  \\ \displaystyle\longrightarrow I=\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\dfrac{\cos\theta\ d\theta}{\cos\theta} \\  \\ \displaystyle\longrightarrow I=\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}d\theta \\  \\ \displaystyle\longrightarrow I=\Big[\theta\Big]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \\  \\ \displaystyle\longrightarrow I=\dfrac{\pi}{2}-\left(-\dfrac{\pi}{2}\right) \\  \\ \displaystyle\longrightarrow\underline{\underline{I=\pi}}

Answered by pratyushara987
7

Answer:

hope it helps you

Step-by-step explanation:

please give me thanks

Attachments:
Similar questions