Math, asked by saanvigrover2007, 3 months ago


 \large \purple \bigstar \:  \color{red} \boxed{ \sf \color{maroon}{Quality  \: Question : }}
If α and β be two zeros of the quadratic polynomial ax² + bx + c, then evaluate :

 \sf(i)  \: \alpha^{2}  +  \beta^{2}  \\ \\  \sf(ii)  \: \alpha^{3}   +   \beta^{3}  \\ \\  \sf(iii)  \: \frac{1}{ \alpha^{3} } +  \frac{1}{ \beta^{3} }   \\ \\ \sf(iv) \frac{  { \alpha}^{2} }{ \beta } + \frac{ { \beta}^{2} }{ \alpha}

Answers

Answered by VishnuPriya2801
77

Answer:-

Given:

α and β are the roots of ax² + bx + c.

We know that;

Sum of the roots = - b/a

So,

⟹ α + β = - b/a -- equation (1)

Product of the roots = c/a

⟹ αβ = c/a -- equation (2)

Now,

We have to find:

1) α² + β²

We know that;

a² + b² = (a + b)² - 2ab

Hence,

⟹ α² + β² = (α + β)² - 2αβ

⟹ α² + β² = ( - b/a)² - 2(c/a)

[ ∵ From equations (1) , (2). ]

⟹ α² + β² = b²/a² - 2c/a

⟹ α² + β² = (b² - 2ac)/a²

_________________________________

2) α³ + β³

We know that;

a³ + b³ = (a + b)³ - 3ab(a + b)

⟹ α³ + β³ = (α + β)³ - 3αβ(α + β)

⟹ α³ + β³ = ( - b/a)³ - 3(c/a)(- b/a)

[ ∵ From equations (1) , (2) ]

⟹ α³ + β³ = - b³/a³ + 3bc/a²

⟹ α³ + β³ = (- b³ + 3abc) / a³

__________________________________

3) (1/α³) + (1/β³)

Taking LCM we get,

⟹ (β³ + α³) / (α³β³)

Substitute the value of α³ + β³ .

⟹ { ( - b³ + 3abc)/a³ } × 1/(αβ)³

⟹ { ( - b³ + 3abc)/a³ } × 1/(c/a)³

⟹ { ( - b³ + 3abc) / a³ } × a³/c³

⟹ ( - b³ + 3abc) / c³

__________________________________

4) (α²/β) + (β²/α)

Taking LCM we get,

⟹ (α³ + β³) / αβ

Substitute the value of α³ + β³ here.

⟹ { ( - b³ + 3abc) / a³ } × (1/αβ)

⟹ { (- b³ + 3abc) /a³ } × 1/(c/a)

⟹ { (- b³ + 3abc) / a³ } × a/c

⟹ ( - b³ + 3abc) / a²c

Answered by Anonymous
68

Answer:

Required Answer :-

At first we need to know some basics

Like

Sum of zeroes is given by

 \sf \:  \alpha  +  \beta  =  \dfrac{ - b}{a}

Product of zeroes is given by

 \sf \:  \alpha  \beta  =  \dfrac{ c}{a}

Now solving them

I]

  \sf \: ( \alpha  +  \beta  {)}^{2}  =  { \alpha }^{2}  - 2 \alpha  \beta  + \beta  {}^{2}

 \sf \: ( \alpha  +  \beta  {)}^{2}  = ( { \alpha  +  \beta) }^{2}  - 2 \alpha  \beta

 \sf \implies \dfrac{ - b}{a}^{2}  - 2 \bigg( \dfrac{c}{a}  \bigg)

Since

- × - = +

 \sf \implies \:  \dfrac{ {b}^{2} }{a {}^{2} }  -  \dfrac{2c}{a}

 \sf \implies \:  \dfrac{ {b }^{2} - 2ca }{ {a}^{2} }

2]

 \sf \: { (\alpha^3 + \beta )}^{3}  =(\alpha+ \beta)^3 - 3\alpha\beta (\alpha + \beta)

By putting value

 \sf \implies \dfrac{-b}{a}^3 - 3\bigg(\dfrac{c}{a}\bigg) \times \dfrac{-b}{a}

 \sf \implies \:  \dfrac{ -  {b}^{3} }{ { a}^{3} }  - 3 \times  \dfrac{c}{a}  \times  \dfrac{ - b}{a}

= -b³ + 3abc/a²

3]

 \sf \:  \dfrac{ { \alpha }^{3}  +  { \beta }^{3} }{ { \alpha }^{3}  { \beta }^{3} }

According to the question

 \sf \dfrac{ -  {b}^{3}  + 3ab}{ { \alpha }^{3}}  \times  \dfrac{1} {{\dfrac{c}{a} }^{3} }

 \sf \:  \dfrac{ - b + 3abc}{a {}^{3} }  \times  \dfrac{1}{ {c}^{3} }  \times  {a}^{3}

 \sf \:  \dfrac{ - b + 3abc}{a {}^{3} }  \times  \dfrac{ {a}^{3} }{ {b}^{3} }

 \sf \dfrac{ - b + 3abc}{ {b}^{3}}

4]

 \sf \dfrac{ -  {b}^{3}  + 3abc}{ {a}^{3}}  \times  \dfrac{1}{ \dfrac{a}{c} }

 \sf \:  \dfrac{ -  {b}^{3}  + 3abc}{ {a}^{3} }  \times  \dfrac{1}{c}  \times a

 \sf \:  \dfrac{ { -  b}^{3} + 3abc }{ {a}^{3} }  \times  \dfrac{a}{c}

 \sf \dfrac{ - b {}^{3}  + 3abc}{ {a}^{2} c}

Similar questions