If α and β be two zeros of the quadratic polynomial ax² + bx + c, then evaluate :
Answers
Answer:-
Given:
α and β are the roots of ax² + bx + c.
We know that;
Sum of the roots = - b/a
So,
⟹ α + β = - b/a -- equation (1)
Product of the roots = c/a
⟹ αβ = c/a -- equation (2)
Now,
We have to find:
1) α² + β²
We know that;
a² + b² = (a + b)² - 2ab
Hence,
⟹ α² + β² = (α + β)² - 2αβ
⟹ α² + β² = ( - b/a)² - 2(c/a)
[ ∵ From equations (1) , (2). ]
⟹ α² + β² = b²/a² - 2c/a
⟹ α² + β² = (b² - 2ac)/a²
_________________________________
2) α³ + β³
We know that;
a³ + b³ = (a + b)³ - 3ab(a + b)
⟹ α³ + β³ = (α + β)³ - 3αβ(α + β)
⟹ α³ + β³ = ( - b/a)³ - 3(c/a)(- b/a)
[ ∵ From equations (1) , (2) ]
⟹ α³ + β³ = - b³/a³ + 3bc/a²
⟹ α³ + β³ = (- b³ + 3abc) / a³
__________________________________
3) (1/α³) + (1/β³)
Taking LCM we get,
⟹ (β³ + α³) / (α³β³)
Substitute the value of α³ + β³ .
⟹ { ( - b³ + 3abc)/a³ } × 1/(αβ)³
⟹ { ( - b³ + 3abc)/a³ } × 1/(c/a)³
⟹ { ( - b³ + 3abc) / a³ } × a³/c³
⟹ ( - b³ + 3abc) / c³
__________________________________
4) (α²/β) + (β²/α)
Taking LCM we get,
⟹ (α³ + β³) / αβ
Substitute the value of α³ + β³ here.
⟹ { ( - b³ + 3abc) / a³ } × (1/αβ)
⟹ { (- b³ + 3abc) /a³ } × 1/(c/a)
⟹ { (- b³ + 3abc) / a³ } × a/c
⟹ ( - b³ + 3abc) / a²c
Answer:
Required Answer :-
At first we need to know some basics
Like
Sum of zeroes is given by
Product of zeroes is given by
Now solving them
I]
Since
- × - = +
2]
By putting value
= -b³ + 3abc/a²
3]
According to the question
4]