Physics, asked by AestheticSky, 2 months ago

\large{\red{\bf Question }}

if \sf y = x^\frac{1}{2}

find the value of \sf\dfrac{dy}{dx}

Class - 11th

Juniors stay away​

Answers

Answered by itzsecretagent
71

\huge† \huge \bold{\: \pmb {\red{ Answer }} }

\tt y = {x}^{\frac{1}{2}}

 \tt We\:the\:the\:formula

\tt\boxed{\bold{\underline{\green{\tt \frac{d({x}^{n})}{dx} = n{x}^{n-1} }}}}

\\ \tt \implies \frac{dy}{dx} = \frac{1}{2}{x}^{\frac{1}{2}-1}

 \tt \implies \frac{dy}{dx} = \frac{1}{2}{x}^{- \frac{1}{2}}

  \tt \implies \frac{dy}{dx} = \frac{1}{2} \frac{1}{{x}^2}{\frac{1}{2}}

 \tt \implies \frac{dy}{dx} = \frac{1}{2} \frac{1}{\sqrt{2}} \\ \\ \tt \therefore \boxed{\bold{\underline{\red{\tt \frac{dy}{dx} = \frac{1}{2\sqrt{x}} }}}}

Similar questions