Math, asked by SƬᏗᏒᏇᏗƦƦᎥᎧƦ, 8 hours ago


   \large{ \red\bigstar} \underline{\huge \bf{Question }}
Find out:–
Value of a for which the straight line 2x + y + 5 + a (x + y) = 0 is,
i) parallel to x = a
ii) parallel to y = a
iii) perpendicular to line 3x + 4y = 5​

Answers

Answered by Yugant1913
35

 \large  \bf \underline{ \underline{Question :  -  -  - }}

❍ Find the value of a for which the straight line 2x + y + 5 + a (x + y) = 0 is

  • i) parallel to x = a
  • ii) parallel to y = a
  • iii) perpendicular to line 3x + 4y = 5

  \underline{\rule{72mm}{1mm}}

 \huge \underline{ \underline{  \bf\: Solution -  -  - }}

Given equation of line is

 \qquad \qquad \sf ↠2x + y + 5 + a(x + y) = 0 \\  \:  \bf \: or \\  \sf \qquad \qquad↠(2 + a)x + (1 + a)y +  = 0

 \\ \sf:  ⟹ \: (1 + a)y =  - (2 + a)x - 5 \\  \\  \\ \sf:  ⟹y =  -  \frac{(2 + a)}{(1 + a)} \:  x  \: -  \frac{5}{(1 + a)}  \\  \\  \\  \\   \:  \:  \underline { \:  \:  \:  \:  \: \blue{∴ \:  \:  \textbf{Gradient of this line = } -  \frac{2 + a}{1 + a} \:  \:  \:  \:  \: }}\\\\

____________

 \\  \textbf{(i) Obviously, line x = a makes an angle 90° with X-axis}

 \\  \bf \red{ ∴ It's  \: gradient = tan90° = \infty  } \\  \\

  \\  \bf \: ∵ Given \:  line  \: is  \: parallel to  \: this  \: line  \\  \\ \sf  ∴ \:  -  \frac{2 + a}{1 + a}  =  \infty  \\  \\  \\  \\ ⟹ \frac{1 + a}{2 + a} = 0  \\  \\  \\  \\ ⟹1 + a = 0 \\  \\  \\  \\  \pink{ \large{  ⟹\underline{ \boxed{ \bf a =  - 1}}}} \\  \\

____________

  \\ \textbf{(ii) Obviously, line y = a makes an angle 0° with X-axis. }

\\∴\:\bf\red{ It's \:Gradient = tan0° = 0} \\  \\

 \\ ∵ \bf \: It  \: is \:  parallel  \: t o \:  given  \: line \\\\∴ \sf \:  -  \frac{2 + a}{1 + a}  = 0 \\  \\  \\  \\ ⟹ \sf \: 2 + a = 0 \\  \\  \\  \\  \large \pink{⟹ \underline{  \boxed{ \bf \: a =  - 2}}} \\  \\

____________

 \\  \textbf{(iii)Here ,equation of the line is :}

 \\  \\  \qquad \qquad \:   \bf \: 3x + 4y = 5 \\  \\ \\   \sf \: ⟹4y = 5 - 3x \\   \\  \\  \sf⟹y =  -  \frac{3}{4} x +  \frac{5}{4}  \\  \\  \\  \qquad \qquad\large  \underline { \pink{ \bf \: ∴It's  \: gradient  \:  =  -  \frac{3}{4} } \:  \:  \: } \\  \\

 \\  \textbf {∵ This is perpendicular to given line } \\  \\

 \\  ∴\qquad \qquad \:  \bf \:  m_1 × m_2 =  - 1 \\  \\

 \\  \sf⟹ \bigg( -  \frac{2 + a}{1 + a} \bigg) \times   \bigg( - \frac{  3 }{4}  \bigg) =  - 1 \\  \\  \\  \\ \sf  ⟹ \frac{3(2 + a)}{4(1 + a)} =  - 1 \\  \\  \\  ⟹ \sf \frac{6 + 3a}{4 + 4a} =  - 1 \\  \\  \\  ⟹ \sf6 + 3a =  - 4 - 4a \\  \\  \\ \sf ⟹7a =  - 10 \\  \\  \\   \qquad \underline{\large \pink{⟹ \boxed{ \bf \: a =  -  \frac{10}{7} }} \qquad} \\  \\

Answered by hmnagaraja3
0

Answer:

Find the value of a for which the straight line 2x + y + 5 + a (x + y) = 0 is

i) parallel to x = a

ii) parallel to y = a

iii) perpendicular to line 3x + 4y = 5

\underline{\rule{72mm}{1mm}}

\huge \underline{ \underline{ \bf\: Solution - - - }}

Solution−−−

Given equation of line is

\begin{gathered} \qquad \qquad \sf ↠2x + y + 5 + a(x + y) = 0 \\ \: \bf \: or \\ \sf \qquad \qquad↠(2 + a)x + (1 + a)y + = 0\end{gathered}

↠2x+y+5+a(x+y)=0

or

↠(2+a)x+(1+a)y+=0

\begin{gathered} \\ \sf: ⟹ \: (1 + a)y = - (2 + a)x - 5 \\ \\ \\ \sf: ⟹y = - \frac{(2 + a)}{(1 + a)} \: x \: - \frac{5}{(1 + a)} \\ \\ \\ \\ \: \: \underline { \: \: \: \: \: \blue{∴ \: \: \textbf{Gradient of this line = } - \frac{2 + a}{1 + a} \: \: \: \: \: }}\\\\\end{gathered}

:⟹(1+a)y=−(2+a)x−5

:⟹y=−

(1+a)

(2+a)

x−

(1+a)

5

∴Gradient of this line = −

1+a

2+a

____________

\begin{gathered} \\ \textbf{(i) Obviously, line x = a makes an angle 90° with X-axis}\end{gathered}

(i) Obviously, line x = a makes an angle 90° with X-axis

\begin{gathered} \\ \bf \red{ ∴ It's \: gradient = tan90° = \infty } \\ \\ \end{gathered}

∴It

sgradient=tan90°=∞

\begin{gathered} \\ \bf \: ∵ Given \: line \: is \: parallel to \: this \: line \\ \\ \sf ∴ \: - \frac{2 + a}{1 + a} = \infty \\ \\ \\ \\ ⟹ \frac{1 + a}{2 + a} = 0 \\ \\ \\ \\ ⟹1 + a = 0 \\ \\ \\ \\ \pink{ \large{ ⟹\underline{ \boxed{ \bf a = - 1}}}} \\ \\ \end{gathered}

Similar questions