Find out:–
Value of a for which the straight line 2x + y + 5 + a (x + y) = 0 is,
i) parallel to x = a
ii) parallel to y = a
iii) perpendicular to line 3x + 4y = 5
Answers
❍ Find the value of a for which the straight line 2x + y + 5 + a (x + y) = 0 is
- i) parallel to x = a
- ii) parallel to y = a
- iii) perpendicular to line 3x + 4y = 5
Given equation of line is
____________
____________
____________
Answer:
Find the value of a for which the straight line 2x + y + 5 + a (x + y) = 0 is
i) parallel to x = a
ii) parallel to y = a
iii) perpendicular to line 3x + 4y = 5
\underline{\rule{72mm}{1mm}}
\huge \underline{ \underline{ \bf\: Solution - - - }}
Solution−−−
Given equation of line is
\begin{gathered} \qquad \qquad \sf ↠2x + y + 5 + a(x + y) = 0 \\ \: \bf \: or \\ \sf \qquad \qquad↠(2 + a)x + (1 + a)y + = 0\end{gathered}
↠2x+y+5+a(x+y)=0
or
↠(2+a)x+(1+a)y+=0
\begin{gathered} \\ \sf: ⟹ \: (1 + a)y = - (2 + a)x - 5 \\ \\ \\ \sf: ⟹y = - \frac{(2 + a)}{(1 + a)} \: x \: - \frac{5}{(1 + a)} \\ \\ \\ \\ \: \: \underline { \: \: \: \: \: \blue{∴ \: \: \textbf{Gradient of this line = } - \frac{2 + a}{1 + a} \: \: \: \: \: }}\\\\\end{gathered}
:⟹(1+a)y=−(2+a)x−5
:⟹y=−
(1+a)
(2+a)
x−
(1+a)
5
∴Gradient of this line = −
1+a
2+a
____________
\begin{gathered} \\ \textbf{(i) Obviously, line x = a makes an angle 90° with X-axis}\end{gathered}
(i) Obviously, line x = a makes an angle 90° with X-axis
\begin{gathered} \\ \bf \red{ ∴ It's \: gradient = tan90° = \infty } \\ \\ \end{gathered}
∴It
′
sgradient=tan90°=∞
\begin{gathered} \\ \bf \: ∵ Given \: line \: is \: parallel to \: this \: line \\ \\ \sf ∴ \: - \frac{2 + a}{1 + a} = \infty \\ \\ \\ \\ ⟹ \frac{1 + a}{2 + a} = 0 \\ \\ \\ \\ ⟹1 + a = 0 \\ \\ \\ \\ \pink{ \large{ ⟹\underline{ \boxed{ \bf a = - 1}}}} \\ \\ \end{gathered}