Math, asked by ItzGeniusMunda, 4 days ago

{\large{\red{\mapsto{\maltese{\underline{\green{\boxed{\blue{\underbrace{\overbrace{\pink{\pmb{\bf{Question:}}}}}}}}}}}}}}
○Moderators
○Brainly Stars
○Other Best Users
find \: derivative \: of \:  \frac{dy}{dx} \: of \\   { \sin}^{2} y \:  +  \cos(xy)

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \mapsto{  \purple{\bf{y =  sin^{2} (y)  + cos(xy)}}}

 \implies  \sf{ \dfrac{dy}{dx}= 2 \:  sin (y) \: cos(y)  \:  \dfrac{dy}{dx}   -  sin(xy) \cdot \left \{ y + x \dfrac{dy}{dx} \right \}} \\

 \implies  \sf{ \dfrac{dy}{dx}=   sin (2y)  \:  \dfrac{dy}{dx}   -  y \: sin(xy)   -  x \:  sin(xy)\dfrac{dy}{dx} } \\

 \implies  \sf{  y \: sin(xy)=   sin (2y)  \:  \dfrac{dy}{dx}    +  \dfrac{dy}{dx}  -  x \:  sin(xy)\dfrac{dy}{dx} } \\

 \implies  \sf{  y \: sin(xy)= \{ 1 +   sin (2y)  - x \: sin(xy) \} \:  \dfrac{dy}{dx}     } \\

 \implies  \sf{  \dfrac{ y \: sin(xy)}{ 1 +   sin (2y)  - x \: sin(xy)}=  \dfrac{dy}{dx}     } \\

 \implies  \sf{  \dfrac{dy}{dx}    = \dfrac{ y \: sin(xy)}{ 1 +   sin (2y)  - x \: sin(xy) }  } \\

Answered by XxAmayraxX
1

Answer:

Hope itt helpss bro!!!!!!

Attachments:
Similar questions