Math, asked by AnanyaBaalveer, 16 days ago


\large\red{\sf{Question}}

 \sf{One  \: of \:  the \:  factors \:  of \:  {x}^{2} +  \frac{1}{ {x}^{2} } + 2 - 2x -  \frac{2}{x}   }
\large\underline{\sf{A \rightarrow x -  \frac{1}{x} }}
\large\underline{\sf{B \rightarrow x +  \frac{1}{x}  - 1}}
\large\underline{\sf{C \rightarrow x +  \frac{1}{x} }}
\large\underline{\sf{D \rightarrow  {x}^{2} +  \frac{1}{ {x}^{2} }  }}

Answers

Answered by mathdude500
23

\large\underline{\sf{Solution-}}

Given expression is

\rm \: {x}^{2} + \dfrac{1}{ {x}^{2} } + 2 - 2x - \dfrac{2}{x}  \\

can be re-arranged as

\rm \:  =  \: \bigg[{x}^{2} + \dfrac{1}{ {x}^{2} } + 2 \bigg]- \bigg(2x +  \dfrac{2}{x}\bigg)  \\

can be further rewritten as

\rm \:  =  \: \bigg[{x}^{2} + \dfrac{1}{ {x}^{2} } + 2 \times x \times  \dfrac{1}{x}  \bigg]- 2\bigg(x +  \dfrac{1}{x}\bigg)  \\

We know,

\boxed{ \rm{ \: {x}^{2} +  {y}^{2} + 2xy =  {(x + y)}^{2} \: }} \\

So, using this, above expression can be rewritten as

\rm \:  =  \:  {\bigg(x + \dfrac{1}{x} \bigg) }^{2} - 2\bigg(x + \dfrac{1}{x}  \bigg)  \\

\rm \:  =  \:  {\bigg(x + \dfrac{1}{x} \bigg) }\bigg[ \bigg(x + \dfrac{1}{x} \bigg)  - 2\bigg]  \\

\rm \:  =  \:  {\bigg(x + \dfrac{1}{x} \bigg) }\bigg(x + \dfrac{1}{x}  - 2\bigg) \\

So,

\rm \:{x}^{2}+\dfrac{1}{ {x}^{2} }+ 2 - 2x - \dfrac{2}{x}={\bigg(x + \dfrac{1}{x} \bigg) }\bigg(x +\dfrac{1}{x}-2\bigg) \\

Hence, option C is correct.

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions