Math, asked by MrVampire01, 4 months ago

\large\rm{QuésTion:-}

The equation given of the two regression lines are 2x + 3yb-6 = 0 and 5x + 7y - 12 = 0.

Find :-

A) correction cofficient
B) σ_{x}/σ_{y}


barsha8584: but ya toh bahut badi problem hai
barsha8584: ab kuch nhi ho sakta
barsha8584: good night der
barsha8584: dear
barsha8584: okk bye
barsha8584: good morning dear

Answers

Answered by MrAnonymous412
38

  \blue{\underline{ \large \rm{QuésTíon :- }}}

The equation given of the two regression lines are 2x + 3yb-6 = 0 and 5x + 7y - 12 = 0.

Find :-

A) correction cofficient

B) \rm\frac{σ_{x}}{σ_{y}}

  \blue{\underline{ \large \rm{SoluTíon  :- }}}

ᴡᴇ ᴀssᴜᴍᴇ ᴛʜᴀᴛ 2x + 3ʏ -6 = 0 ᴛᴏ ʙᴇ ᴛʜᴇ ʟɪɴᴇs ᴏғ ʀᴇɢʀᴇssɪᴏɴ ᴏғ ʏ ᴏɴ x ,

 \sf \: 2x + 3y - 6 = 0 \\

 \sf \implies \: x =  -  \frac{3}{2} y + 3 \\

 \boxed{\sf \implies \: bxy =  -  \frac{3}{2}} \\

5x + 7ʏ - 12 = 0 ᴛᴏ ʙᴇ ᴛʜᴇ ʟɪɴᴇ ʟɪɴᴇ ᴏғ ʀᴇɢʀᴇssɪᴏɴ ᴏғ x ᴏɴ ʏ ,

 \sf \: 5x + 7y - 12 = 0 \\

 \sf \implies \: y \:  =  -  \frac{5}{7} x +  \frac{12}{7}  \\

 \boxed{\sf  \implies \: byx \:  =  -  \frac{5}{7} }\\

Now,

 \sf \: r \:  =  \sqrt{bxy \times byx}  =  \sqrt{ \frac{15}{14} }  \\

 \sf \: byx =   \frac{rσ_y}{σ_y ^{2} }   =  \frac{ - 5}{7} \:  \: ,bxy \:  = \frac{rσ_x}{σ_y} =  \frac{ - 3}{2}  \\

 \sf {\implies\frac{σ_x ^{2} }{σ_y ^{2} }} =  \frac{ \frac{3}{2} }{ \frac{5}{7} } \\

 \sf {\implies\frac{σ_x ^{2} }{σ_y ^{2} }} =   \frac{21}{10} \\

  \green{ \boxed{\red{ \sf {\implies\frac{σ_x  }{σ_y  }} =    \sqrt{\frac{21}{10}}}} }\\

Answered by PixleyPanda
27

\huge\blue{\boxed{\red{\mathfrak{\overbrace{\underbrace{\fcolorbox{red}{aqua}{\underline{\red{✯answer✯}}}}}}}}}

Thanks for the A2A!

⚡First, it asks to find the intersection of  {\underline{ \mathtt{\red{2x-3y-5=0} \green{}\mathtt\blue{} \purple{} \mathtt \orange{}\pink{}}}}\:  and  {\underline{ \mathtt{\red{} \green{}\mathtt\blue{7x-5y-2=0 } \purple{} \mathtt \orange{}\pink{}}}}\:

⚡To do this, we equate them.

{\underline{ \mathtt{\red{2x-3y-5=7x-5y-2} \green{}\mathtt\blue{} \purple{} \mathtt \orange{}\pink{}}}}\:  get them equal

{\underline{ \mathtt{\red{} \green{}\mathtt\blue{14x-21y-35=14x-10y-4} \purple{} \mathtt \orange{}\pink{}}}}\:  get x’s ready to cancel

{\underline{ \mathtt{\red{-11y-31=0 } \green{}\mathtt\blue{} \purple{} \mathtt \orange{}\pink{}}}}\:

{\underline{ \mathtt{\red{} \green{}\mathtt\blue{y=-\frac{-31}{11} } \purple{} \mathtt \orange{}\pink{}}}}\:

⚡Then we substitute that in to the original equations.

{\underline{ \mathtt{\red{2x-3(-31/11)-5=0} \green{}\mathtt\blue{} \purple{} \mathtt \orange{}\pink{}}}}\:

We solve that to get{\underline{ \mathtt{\red{} \green{}\mathtt\blue{  x=\frac{-19}{11} } \purple{} \mathtt \orange{}\pink{}}}}\:

Correlation  coefficient (r)=−0.866

Refer the attachment for further sum

Hope it helps

Attachments:
Similar questions