Math, asked by INSIDI0US, 4 months ago

 \Large {\sf{\pmb{\underline{\underline{Challenge...}}}}}

 \sf \circ\ {If\ \dfrac{d}{dx}f(x)\ =\ 4x^3\ -\ \dfrac{3}{x^4}\ such\ that\ f(2)\ =\ 0,\ then\ f(x)\ is:-}

 \sf {(A)\ x^4\ +\ \dfrac{1}{x^3}\ -\ \dfrac{129}{8}} \: \: \: \: \: \: \: \: \: {(B)\ x^3\ +\ \dfrac{1}{x^4}\ +\ \dfrac{129}{8}}

 \sf {(C)\ x^4\ +\ \dfrac{1}{x^3}\ +\ \dfrac{129}{8}} \: \: \: \: \: \: \: \: \: {(D)\ x^3\ +\ \dfrac{1}{x^4}\ -\ \dfrac{129}{8}}

▪︎Note :-

➽ Don't spam..
➽ Quality answer needed..​

Answers

Answered by amitkumar44481
163

Answer :

( A )

SolutioN :

 \tt \: If\ \dfrac{d}{dx}f(x)\ =\ 4x^3\ -\ \dfrac{3}{x^4}

Then,

→ Multiple both sides by dx.

 \tt  :\implies d \: f(x)\ = \bigg(4x^3 - \dfrac{3}{x^4} \bigg) dx

Taking both side integration, We get.

 \tt  :\implies  \int d \: f(x)\ = \int \bigg(4x^3 - \dfrac{3}{x^4} \bigg) dx \\

 \tt  :\implies  f(x)\ = \int 4x^3\,dx -\int \dfrac{3}{x^4} \,dx \\

 \tt  :\implies  f(x)\ =  \dfrac{4x^4}{4} - \dfrac{ 3 {x}^{ - 3} }{ - 3}  + C

 \tt  :\implies  f(x)\ =  x^4  +   {x}^{ - 3} + C

Now, Let find the value of C if f ( 2 ) is 0.

( Condition given )

 \tt  :\implies  f(2)\ =  0.

 \tt  :\implies  f(2)\ =  (2)^4  +   {(2)}^{ - 3} + C

 \tt  :\implies  0 =  (2)^4  +   {(2)}^{ - 3} + C

 \tt  :\implies  0 =  16  +   \dfrac{1}{8} + C

 \tt  :\implies C =  - \dfrac{129}{8} .

Now, Compare f ( x ) We get.

 \tt  :\implies  f(x)\ =  x^4  +   {x}^{ - 3}  -  \dfrac{129}{8}

 \tt  :\implies  f(x)\ =  x^4  +   \dfrac{1} {{x}^{3}}  -  \dfrac{129}{8}

Correct option A )

 { \tt  \:  \:  \:  \: (A)x^4\ +\ \dfrac{1}{x^3}\ -\ \dfrac{129}{8}}


Anonymous: Awesome ! :)
amitkumar44481: Thanks :-)
BrainlyIAS: Nice work ! ❤️
amitkumar44481: Thanks :-)
mddilshad11ab: Wonderful bro
amitkumar44481: Thanks :-)
Answered by BrainlyYuVa
123

Solution

Given :-

  • \tt{\:if\:\dfrac{d}{dx}f(x)\:=\:4x^3-\dfrac{3}{x^4}\:Such\:that\:f(2)\:=\:0\:\:then\:Value\:of\:f(x)\:is}

Find :-

  • Value of f(x)

Explanation

We Have,

\tt{\dfrac{d}{dx}f(x)\:=\:4x^3-\dfrac{3}{x^4}}_____(1)

Integrate equ(1)

\implies\tt{\displaystyle\int\dfrac{d}{dx}f(x)\:dx\:=\:\int\big(4x^3-\dfrac{3}{x^4}\big)dx}

We Know,

\star\tt{\red{\displaystyle\int\:x^n\:dx\:=\:\dfrac{x^{n+1}}{n+1}+C}}

\implies\tt{\displaystyle\:f(x)\:=\:4\dfrac{x^{3+1}}{3+1}-3\dfrac{x^{-4+1}}{-4+1}+C}

\implies\tt{\:f(x)\:=\:x^4+\dfrac{1}{x^3}+C}_________(2)

We Have,

  • f(2) = 0

So, Keep x = 2 , in equ(2)

\implies\tt{\:0\:=\:2^4+\dfrac{1}{2^3}+C}

\implies\tt{\:0\:=\:16+\dfrac{1}{8}+C}

\implies\tt{\:0\:=\:\dfrac{(128+1)}{8}+C}

\implies\tt{\:0\:=\:\dfrac{129}{8}+C}

\implies\tt{\:C\:=\:\dfrac{-129}{8}}_______(3)

Keep Value of X in equ(2)

\implies\tt{\red{\:f(x)\:=\:x^4-\dfrac{1}{x^3}-\dfrac{129}{8}}}

Hence

  • Your Answer will be option Number (A).

__________________


BrainlyIAS: Great Efforts ! ♥️
mddilshad11ab: Amazing¶
Similar questions