Math, asked by Rubellite, 4 months ago

\Large{\underbrace{\sf{\orange{Question:}}}}
[ Refer to the attached picture! :) ]

______________

\large{\underline{\bf{Source}}} - Class 9th, R.D. Sharma Mathematics Book (CBSE).

\large{\underline{\bf{Chapter}}} - 1, Number System.




Attachments:

Answers

Answered by BrainlyKilIer
21

\Large{\underbrace{\underline{\bf{QUESTION\:}}}}: \\

Find the value of 'p'.

\dagger\:\bf\red{5^{(p\:-\:5)}\times{2^{(p\:-\:5)}}\:=\:5\:} \\ \\

\Large{\underbrace{\underline{\bf{ANSWER\:}}}}: \\

{\bf{Given\::}} \\

\red\checkmark\:\tt{5^{(p\:-\:5)}\times{2^{(p\:-\:5)}}\:=\:5\:} \\

 \\ {\bf{To\: Find\::}} \\

  • The value of 'p'.

 \\ {\bf{Properties\::}} \\

\dagger\:\bf\blue{a^{1}\:=\:a\:} \\

\dagger\:\bf\purple{a^{0}\:=\:1\:} \\

 \\ {\bf{Solution\::}} \\

:\implies\:\tt{5^{(p\:-\:5)}\times{2^{(p\:-\:5)}}\:=\:5\:} \\

☛ We also write as,

:\implies\:\tt{5^{(p\:-\:5)}\times{2^{(p\:-\:5)}}\:=\:5\times{1}\:} \\

:\implies\:\tt{5^{(p\:-\:5)}\times{2^{(p\:-\:5)}}\:=\:5^{1}\times{2^{0}}\:} \\

☛ Compare both sides, we get

:\implies\:\tt{5^{(p\:-\:5)}\:=\:5^{1}\:~~~\&\:~~~\:{2^{(p\:-\:5)}}\:=\:2^{0}\:} \\

:\implies\:\tt{p\:-\:5\:=\:1\:~~~Or\:~~~\:p\:-\:5\:=\:0\:} \\

:\implies\:\tt{p\:=\:1\:+\:5\:~~~Or\:~~~\:p\:=\:0\:+\:5\:} \\

:\implies\:{\tt{\green {p\:=\:6}}}\:~~~Or\:~~~\:{\tt{\green {p\:=\:5}}}\: \\

Answered by Anonymous
18

\large{\underline{\underline{\red{\bf{Given}}}}}

  • \sf{5^{(p - 5)} \times 2^{(p - 5)} = 5}

\large{\underline{\underline{\red{\bf{To\: find}}}}}

  • Value of p.

\large{\underline{\underline{\red{\bf{Solution}}}}}

  • We have an exponential equation and need to find out the value of p.

As we can see that, right and side can be written as 5 × 1

\tt\dashrightarrow{5^{(p - 5)} \times 2^{(p - 5)} = 5 \times 1}

Now, let's see some identities used here

  • \sf{a^1 = a}
  • \sf{a^0 = 1}

Reminding the both identities, we can write

\tt\dashrightarrow{5^{(p - 5)} \times 2^{(p - 5)} = 5^1 \times 2^0}

Comparing both the sides

\tt:\implies{p - 5 = 1}

\tt:\implies{p = 1 + 5}

\tt:\implies{p = 6}

Similarly,

\tt:\implies{p - 5 = 0}

\tt:\implies{p = 5}

Hence,

  • Value of p is 5 or 6.

━━━━━━━━━━━━━━━━━━━━━━

\: \: \: \: \: \: \: \: \: \: \: \: \boxed{\bf{\bigstar{More\: to\: know{\bigstar}}}}

  • \sf{a^n \times a^m = a^{n + m}}

  • \sf{a^n \div a^m = a^{n - m}}

  • \sf{a^n \times b^n = ab^n}

  • \sf{(a^n)^m = a^{nm}}
Similar questions