Physics, asked by Anonymous, 7 months ago

\large\underline\bold{ANSWER \:FAST\red{\huge{\checkmark}}}

the sum of two unit vectors is also a vector of unit magnitude then the magnitude of the difference of the two unit vectors is?

a)1 unit
b)2 unit
c)√3 units
d)0​

Answers

Answered by AdorableMe
19

Given :-

The sum of two unit vectors is also a vector of unit magnitude.

To Find :-

The magnitude of the difference of the two unit vectors.

Solution :-

A/q,

\sf{|\overrightarrow{a}+\overrightarrow{b}|=1}

\sf{\implies \sqrt{ |\overrightarrow{a}|^2+|\overrightarrow{b}|^2+2|\overrightarrow{a}||\overrightarrow{b}|cos\theta}=1 }

\sf{\implies 1+1+2cos\theta=1 }

\sf{\implies 2(1+cos\theta)=1}

\sf{\implies cos\theta=\dfrac{1}{2}-1 }

\sf{\implies cos\theta=\dfrac{-1}{2} }

\sf{\implies \theta=120^\circ}

_______________________

\sf{|\overrightarrow{a}-\overrightarrow{b}|=\sqrt{ |\overrightarrow{a}|^2+|\overrightarrow{b}|^2-2|\overrightarrow{a}||\overrightarrow{b}|cos\theta} }

\sf{=\sqrt{1+1-2cos120^\circ} }

\sf{=\sqrt{2+2\times \dfrac{1}{2}} }

\sf{=\sqrt{2+1} }

\sf{=\sqrt{3} }

Therefore, the answer is √3.

Answered by Anonymous
0

\huge\underline\bold{AnSwEr,}

Given :-

The sum of two unit vectors is also a vector of unit magnitude.

To Find :-

The magnitude of the difference of the two unit vectors.

Solution :-

A/q,

\sf{|\overrightarrow{a}+\overrightarrow{b}|=1}

\sf{\implies \sqrt{ |\overrightarrow{a}|^2+|\overrightarrow{b}|^2+2|\overrightarrow{a}||\overrightarrow{b}|cos\theta}=1 }

\sf{\implies 1+1+2cos\theta=1 }

\sf{\implies 2(1+cos\theta)=1}

\sf{\implies cos\theta=\dfrac{1}{2}-1 }

\sf{\implies cos\theta=\dfrac{-1}{2} }

\sf{\implies \theta=120^\circ}

_______________________

\sf{|\overrightarrow{a}-\overrightarrow{b}|=\sqrt{ |\overrightarrow{a}|^2+|\overrightarrow{b}|^2-2|\overrightarrow{a}||\overrightarrow{b}|cos\theta} }

\sf{=\sqrt{1+1-2cos120^\circ} }

\sf{=\sqrt{2+2\times \dfrac{1}{2}} }

\sf{=\sqrt{2+1} }

\sf{=\sqrt{3} }

Therefore, the answer is √3.

MasterHunTer\:\:/;/;+±

Similar questions