Math, asked by itzunknowngirl92, 1 month ago


\large{{\underline{\color{red}{\bf{question -  }}}}}

\large{{\underline{\color{green}{\bf{find \: the \: general \: solution \: for \: each \: in \: the \: equation - }}}}}


➪ Sin2x + Cosx = 0


☠️NoTE☠️
~ Jisko nhi aata ho wo yaha se chale jae
aur faltu answer mat de☠️​

Answers

Answered by XxMrZombiexX
255

Step-by-step explanation:

 \large\blue{ \underline{\underline{  \qquad\qquad \red{Given \:  that}  \qquad\qquad}}}

  • Sin2x + Cosx = 0

 \bf\large\blue{ \underline{\underline{  \qquad\qquad \red{Need\; To  \:  Find}  \qquad\qquad}}} \:

  • find the general solution for each in the equation

 \rm \large\blue{ \underline{\underline{  \qquad\qquad \green{SoLuTiOn}  \qquad\qquad}}} \:

 \rm \: ➪  \:  \:  \: Sin2x + Cosx = 0 \:  \:  \:  \qquad\{given \}

Putting sin 2x = 2 sin x ços x

 \rm \blue{ :  ➪  }\:  \:  \:  \: 2 \: sin \: x \: cos \: x \:  + cos \: x \:  = 0 \\\\\\  \large \rm  \blue{:  \: ➪  \:  \:  \:cos \: x \: (2sin \: x + 1) = 0 \: }

Hence ,

 \tt❒ \: cos \: x = 0 \:  \:  \:   \& \:  \:  \: 2sin \: x + 1 = 0 \\\\\\  \tt❒cos \: x \:  = 0 \:  \:  \: \& \:  \:  \: 2sin \: x =  - 1 \\\\\\  \large {\tt❒ \:  \pink{cos \: x \:  = 0 \:  \:  \:   \& \:  \:  \: sin \: x \dfrac{ - 1}{2} }}

we find general solution of both equations separately

cos x = 0 (Given)

 \sf \: general \:  solution \:  be \:  \:  \red{x \:  = (2n + 1) \dfrac{ \pi}{2} }  \qquad \:

 \tt \qquad \qquad   \sf \:  \:  \:  where \bf \:  \: n \:  \in \:  \: z

 \sf \: General \:  solution \:  for \:  \red{ sin \:  x = \dfrac{ - 1}{2}  }

 \sf \: ❒ Let \red{\:  s in \:  x = sin \:  y } \qquad \:  -  -  -  eq.(1)

 \sf❒ \red{ sin \:  x = \dfrac{-1}{2} } \qquad -  -  - (1) \qquad \bigg(given \bigg)

_____________________________

 \huge \qquad \qquad \frak{rough}

we know that

 \sf \: sin \: 30 \degree \:  =  \dfrac{1}{2}

 \qquad \sf \: But  \: we  \: need  \:  \dfrac{ - 1}{2}

 \bf \: So, \:  angle  \: is \:  3^{ rd}   \: \&  \: 4^ {th} \: quadrant \:  \:   \theta = 30 \degree

:\longrightarrow \sf \: 180 + \theta  \\  \\  \\  :\longrightarrow180 + (30) \\  \\  \\ \large \pink{ :\longrightarrow210 \degree}

:\longrightarrow \sf \:  \cancel{210} \times  \dfrac{\pi}{ \cancel{180} } \\  \\  \\ :\longrightarrow7 \times  \dfrac{\pi}{6}  \\  \\   \\ \: \pink{ : \large \longrightarrow \dfrac{7\pi}{6} }

______________________________

From equation (1) & (2)

   \sf: \longmapsto \: sin \: x = sin \: y

substituting values we get

 \sf: \longmapsto \: sin \: y \:  =  \:   \dfrac{ - 1}{2}

 \sf: \longmapsto \cancel{ sin }\: y =  \cancel{sin }\:   \dfrac{7 \pi}{6} \\\\\large\sf y = \dfrac{7\pi}{6}

General Solution is

 \sf \: x \:  = n \pi \:  + ( - 1)^ny \:  \:  \: where \:  \bf \: n  \:  \in \: z

putting value of y =  \dfrac{7\pi}{6}

we get,

 \sf \: x \:  = n \pi \:  + ( - 1) ^n \dfrac{7 \pi}{6}  \:  \:  \:  \:  \: where \bf \: n \:  \in \: z

Therefore

 \sf \:  \: for \: cos \: x \: =  0 \: ,  \:  \: x = (2n + 1) \dfrac{ \pi}{2}  \\  \\  \\  \bf \large \: or \\  \\  \\  \\

 \sf for \: sin \: x \:  =  \dfrac{ - 1}{2} \:  \:  \:  ,  \:  \: x =n \pi \:  + ( - 1)^n \:  \dfrac{7 \pi}{6}   \:  \:  \:  \: where \:  \bf \: n \:  \in \: x

Attachments:
Similar questions