Math, asked by VenomBoi, 3 months ago

\large{\underline{\underline{\bf{Question}}}}
Find the particular solution of the differential equation \dfrac{dy}{dx} = -4x y^2 given that y = 1, when x = 0.

__ Moderator and Stars can answer __

Answers

Answered by Anonymous
18

Solution -

If y ≠ 0, the given differential equation can be written as

  • \bf{\dfrac{dy}{y^2} = -4x\: dx}

Integrating both the sides

\displaystyle\tt:\implies\: \: \: \: \: \: \: \: {\int \dfrac{dy}{y^2} = -4 \int x\: dx}

\tt:\implies\: \: \: \: \: \: \: \: {- \dfrac{1}{y} = -2x^2 +C}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{1}{y} = 2x^2 - C}

\tt:\implies\: \: \: \: \: \: \: \: {y = \dfrac{1}{2x^2 - C}}⠀⠀...[1]

Substituting y = 1 and x = 0 in [1]

\tt:\implies\: \: \: \: \: \: \: \: {1 = \dfrac{1}{2(0)^2 - C}}

\tt:\implies\: \: \: \: \: \: \: \: {1 = \dfrac{1}{2(0) - C}}

\tt:\implies\: \: \: \: \: \: \: \: {1 = \dfrac{1}{-C}}

\bf:\implies\: \: \: \: \: \: \: \: {C = -1}

Now, we will put the value of C in equation [1], to get the particular solution of the given differential equation.

\tt:\implies\: \: \: \: \: \: \: \: {y = \dfrac{1}{2x^2 - (-1)}}

\tt:\implies\: \: \: \: \: \: \: \: {y = \dfrac{1}{2x^2 + 1}}

\underline{\sf{Hence,\: the\: required\: solution\: is}}

  • \bf\purple{y = \dfrac{1}{2x^2 + 1}}

━━━━━━━━━━━━━━━━━━━━━━


TheValkyrie: Awesome!
Similar questions