Math, asked by Anonymous, 2 months ago


 \large{ \underline{ \underline{ \bigstar \:  \:  \:  \:  \pmb{ \sf{Question \:  : }}}}}
 \odot \:  \:  \:  \: ɪғ \:  \:  \sf{ {x}^{5}  +  {y}^{5}  =  {x}^{3}  {y}^{2} }, sʜᴏᴡ  \:  \: ᴛʜᴀᴛ \:  \:  \sf { \frac{dy}{dx}  =  \frac{y}{x} } \\

Answers

Answered by mathdude500
3

Appropriate Question :-

\rm :\longmapsto\:ɪғ \:  {(x + y)}^{5} =  {x}^{3} {y}^{2}, \: sʜᴏᴡ \: ᴛʜᴀᴛ \: \dfrac{dy}{dx} = \dfrac{y}{x}

Formula Used :-

 \red{ \boxed{ \sf{ \:  log(xy) = logx + logy }}}

 \red{ \boxed{ \sf{  log( {x}^{y} ) \:  =  \: y \: logx}}}

 \red{ \boxed{ \sf{ \dfrac{d}{dx}x\:  =  \: 1}}}

 \red{ \boxed{ \sf{ \dfrac{d}{dx}logx\:  =  \:  \frac{1}{x} }}}

Solution :-

Given function is

\rm :\longmapsto\: {(x + y)}^{5} =  {x}^{3} {y}^{2}

On taking log both sides, we get

\rm :\longmapsto\:log {(x + y)}^{5} =log(  {x}^{3} {y}^{2} )

\rm :\longmapsto\:5 log(x + y) =  log( {x}^{3} ) +  log( {y}^{2} )

\rm :\longmapsto\:5 log(x + y) = 3 log( {x}) +  2log( {y} )

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}5 log(x + y) = \dfrac{d}{dx}3 log( {x}) + \dfrac{d}{dx} 2log( {y} )

\rm :\longmapsto\:5\dfrac{d}{dx} log(x + y) = 3\dfrac{d}{dx}log( {x}) +2 \dfrac{d}{dx} log( {y} )

\rm :\longmapsto\:5 \times \dfrac{1}{x + y} \bigg(1 + \dfrac{dy}{dx} \bigg) = \dfrac{3}{x}  + \dfrac{2}{y}\dfrac{dy}{dx}

\rm :\longmapsto\:\dfrac{5}{x + y} \bigg(1 + \dfrac{dy}{dx} \bigg) = \dfrac{3}{x}  + \dfrac{2}{y}\dfrac{dy}{dx}

\rm :\longmapsto\:\dfrac{5}{x + y}  + \dfrac{5}{x + y}  \dfrac{dy}{dx} = \dfrac{3}{x}  + \dfrac{2}{y}\dfrac{dy}{dx}

\rm :\longmapsto\:  \dfrac{5}{x + y}  \dfrac{dy}{dx}  - \dfrac{2}{y}\dfrac{dy}{dx}= \dfrac{3}{x}   - \dfrac{5}{x + y}

\rm :\longmapsto\:   \bigg(\dfrac{5}{x + y}   - \dfrac{2}{y} \bigg)\dfrac{dy}{dx}= \dfrac{3}{x}   - \dfrac{5}{x + y}

\rm :\longmapsto\:   \bigg(\dfrac{5y - 2x - 2y}{y(x + y)}   \bigg)\dfrac{dy}{dx}= \dfrac{3x + 3y - 5x}{x(x + y)}

\rm :\longmapsto\:   \bigg(\dfrac{3y - 2x}{y(x + y)}   \bigg)\dfrac{dy}{dx}= \dfrac{3y - 2x}{x(x + y)}

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx} = \dfrac{1}{x}

\bf\implies \:\dfrac{dy}{dx} = \dfrac{y}{x}

Short Cut Trick

 \boxed{\bf :\longmapsto\:ɪғ \:  {(x + y)}^{m + n} =  {x}^{m} {y}^{n}, \: then\: \dfrac{dy}{dx} = \dfrac{y}{x} }

Similar questions