Math, asked by aayushkalra5998, 1 year ago

[tex] \left |\begin{array}{ccc}1+sin²θ&cos²θ&4sin4θ\\sin²θ&1+cos²θ&4sin4θ \\ sin²θ&cos²θ &1+4sin4θ\end{array}\right | =0; 0 < θ < π/2,Solve it. [\tex]

Answers

Answered by hukam0685
0

Step-by-step explanation:

 \left |\begin{array}{ccc}1+sin^2\theta&amp;cos^2\theta&amp;4sin4\theta\\sin^2\theta&amp;1+cos^2\theta&amp;4sin4\theta \\sin^2\theta&amp;cos^2\theta &amp;1+4sin4\theta\end{array}\right | =0; 0 &lt; θ &lt; π/2

C_1 -  &gt; C_1 + C_2 + C_3 \\  \\

 \left |\begin{array}{ccc}1+sin^2\theta+cos^2\theta+4sin4\theta&amp;cos^2\theta&amp;4sin4\theta\\1+sin^2\theta+cos^2\theta+4sin4\theta&amp;1+cos^2\theta&amp;4sin4\theta \\ 1+sin^2\theta+cos^2\theta+4sin4\theta&amp;cos^2\theta &amp;1+4sin4\theta\end{array}\right | =0; 0 &lt; θ &lt; π/2

 \left |\begin{array}{ccc}2+4sin4\theta&amp;cos^2\theta&amp;4sin4\theta\\2+4sin4\theta&amp;1+cos^2\theta&amp;4sin4\theta \\ 2+4sin4\theta&amp;cos^2\theta &amp;1+4sin4\theta\end{array}\right | =0; 0 &lt; θ &lt; π/2

Take common 2 +4 sin4θ from

 2+4sin4\theta\left |\begin{array}{ccc}1&amp;cos^2\theta&amp;4sin4\theta\\1&amp;1+cos^2\theta&amp;4sin4\theta \\ 1&amp;cos^2\theta &amp;1+4sin4\theta\end{array}\right | =0; 0 &lt; θ &lt; π/2

R_1 -  &gt; R_1 - R_3 \\  \\ R_2 -  &gt; R_2 - R_3 \\  \\

 \left |\begin{array}{ccc}0&amp;0&amp;-1\\0&amp;1&amp;-1 \\ 1&amp;cos^2\theta &amp;1+4sin4\theta\end{array}\right | =0; 0 &lt; θ &lt; π/2

Expand the determinant along R1

[tex](2+4sin4\theta)(1+cos^2\theta+4sin4\theta)=0\\\\(2+4sin4\theta)=0\\\\sin4\theta=\frac{-1}{2}\\\\4\theta=210\\\\\theta=52.5°\\\\(1+cos^2\theta+4sin4\theta)=0\\\\

Similar questions