Answers
Answered by
0
sinx−cosxcos2x=sinx−cosxcos2x−sin2x=−cosx−sinx(cosx−sinx)⋅(cosx+sinx)=−1cosx+sinx
Hence the limit is
limx→π4−1cosx+sinx=−1cos45+sin45=−12⋅√22=−1√2sinx−cosxcos2x=sinx−cosxcos2x−sin2x=−cosx−sinx(cosx−sinx)⋅(cosx+sinx)=−1cosx+sinx
Hence the limit is
limx→π4−1cosx+sinx=−1cos45+sin45=−12⋅√22=−1√2
Hence the limit is
limx→π4−1cosx+sinx=−1cos45+sin45=−12⋅√22=−1√2sinx−cosxcos2x=sinx−cosxcos2x−sin2x=−cosx−sinx(cosx−sinx)⋅(cosx+sinx)=−1cosx+sinx
Hence the limit is
limx→π4−1cosx+sinx=−1cos45+sin45=−12⋅√22=−1√2
Similar questions