Math, asked by himanshilohile, 4 months ago


 lim \\ x = 0\frac{1 -  \cos(x) }{ { \sin}^{2}x }

Answers

Answered by mathdude500
3

\large\underline\purple{\bold{Solution :-  }}

\displaystyle \rm \ \lim_{ x\to0} \dfrac{1 - cosx }{ {sin}^{2}  x}

\bf \: = \displaystyle \rm \ \lim_{ x\to0} \dfrac{1 - cosx}{1 -  {cos}^{2}x }

\bf \: = \displaystyle \rm \ \lim_{ x\to0} \dfrac{ \cancel{1 - cosx}}{\cancel{1 - cosx} \:  \: (1 + cosx)}

\bf \: = \displaystyle \rm \ \lim_{ x\to0} \dfrac{1}{1 + cosx}

 =  \rm \: \dfrac{1 }{1 + cos0}

 =  \rm \: \dfrac{1}{1 + 1}

 =  \rm \: \dfrac{1}{2}

Similar questions