Math, asked by PragyaTbia, 1 year ago

\lim_{x\rightarrow0}f(x), \,ज्ञात कीजिए, जहाँ  \,f(x) = \right \begin{cases}{\dfrac{x}{|x|} , \,\,\,\,\,x \neq 0 \\\atop \atop 0, \, \,\,\,\,\,\,\,\,\,\,\,\, x = 0 \end{cases}

Answers

Answered by kaushalinspire
0

Answer:

Step-by-step explanation:

\lim_{x\rightarrow0}f(x),f(x) = \right \begin{cases}{\dfrac{x}{|x|} , \,\,\,\,\,x \neq 0 \\\atop \atop 0, \, \,\,\,\,\,\,\,\,\,\,\,\, x = 0 \end{cases}

सीमा x\rightarrow0 i.e.   x\rightarrow0^- तथा  x\rightarrow0^+

अब  x\rightarrow0^-=\lim_x_\rightarrow_0_{^-}\frac{x}{|x|} =-1

तथा x\rightarrow0^+=\lim_x_\rightarrow_0_{^+}\frac{x}{|x|} =1

अर्थात  \lim_{x\rightarrow0}f(x)  का अस्तित्व नहीं है।

Similar questions
Math, 1 year ago