Answers
Answered by
1
============================================================
Answered by
0
let x = π/4 + Δx So our limit is as Δx -> 0
tan π/4 = 1 sin 45 = 1/√2
numerator = 1 - tan (π/4 + Δx ) = 1 - [ (tan 45 + tan Δx)/(1 - tan 45 tan Δx) ]
= 1 - [ (1 + tan Δx)/ (1-tan Δx) ] = - 2 tan Δx / (1 - tan Δx)
Numerator / Δx = - 2 ( tan Δx / Δx ) * 1/(1 - tan Δx)
Lim Numerator / Δx = - 2 as Lim (tan Δx / Δx) = 1 and Lim tan Δx = 0
Δx->0 Δx->0 Δx->0
Denom = 1 - √2 sin (45+Δx) = 1 - Cos Δx - Sin Δx
= 2 sin² Δx/2 - 2 Sin Δx/2 Cos Δx/2 = 2 Sin Δx/2 [ sin Δx/2 - cos Δx/2]
Denom / Δx = ( Sin Δx/2 / Δx/2) [ sin Δx/2 - cos Δx/2 ]
Lim Denom / Δx = -1 as Lim sin Δx/2 / Δx/2 = 1
Δx -> 0 Δx/2 -> 0
Lim Δx/2 ->0 of Sin Δx/2 =0 and for cos , it is 1.
So numerator / Denominator as Lim Δx->0 , -2 / -1 = 2
tan π/4 = 1 sin 45 = 1/√2
numerator = 1 - tan (π/4 + Δx ) = 1 - [ (tan 45 + tan Δx)/(1 - tan 45 tan Δx) ]
= 1 - [ (1 + tan Δx)/ (1-tan Δx) ] = - 2 tan Δx / (1 - tan Δx)
Numerator / Δx = - 2 ( tan Δx / Δx ) * 1/(1 - tan Δx)
Lim Numerator / Δx = - 2 as Lim (tan Δx / Δx) = 1 and Lim tan Δx = 0
Δx->0 Δx->0 Δx->0
Denom = 1 - √2 sin (45+Δx) = 1 - Cos Δx - Sin Δx
= 2 sin² Δx/2 - 2 Sin Δx/2 Cos Δx/2 = 2 Sin Δx/2 [ sin Δx/2 - cos Δx/2]
Denom / Δx = ( Sin Δx/2 / Δx/2) [ sin Δx/2 - cos Δx/2 ]
Lim Denom / Δx = -1 as Lim sin Δx/2 / Δx/2 = 1
Δx -> 0 Δx/2 -> 0
Lim Δx/2 ->0 of Sin Δx/2 =0 and for cos , it is 1.
So numerator / Denominator as Lim Δx->0 , -2 / -1 = 2
karthik4297:
Thanks a lot... I needed this badly :)
Similar questions