[/tex]
kvnmurty:
clarify what the argument of Sin function is. Is cos x inside the sin function. Is square root only for 1/4 ? not for x?
Answers
Answered by
0
Sin² [ πcos² x ] = sin² [ π(1+cos 2x)/2 ] = sin² [ π/2 + π/2 cos2x]
= cos² [π/2 cos 2x ] = 1/2 * [ 1 + cos ( π cos 2x ) ]
t = π cos 2x as x -> 0, t -> π
x = 1/2 * Cos^-1 ( t/π )
denominator 1/2 x^4
===========================================
Try in some other way: Let us use the Taylor series of expansion for cos x.
cos x = 1 - x² /2 + x^4 /4! - x^6 /6! + .. = 1 - x² y where y = 1/2 - x²/4! + x^4/6! - ...
y -> 1/2 as x->0
So cos² x = (1 + x^4 y² - 2 x² y)
Sin² [ πcos² x ] = sin² [ π + πx^4 y² - 2 π x² y ] sin π+t = - sin t
= sin ² [ πx^4 y² - 2 π x² y ]
Now problem is lim as x-> 0
sin² [πx^4 y² - 2 π x² y ]
= ------------------------------
x^4
sin² [πx^4 y² - 2 π x² y ] [πx^4 y² - 2 π x² y ]²
= ---------------------------------- * ---------------------- multiply & divide by same.
[πx^4 y² - 2 π x² y ]² x^4
= 1² * (πx²y)² [x² y² - 2]² / x^4 = π² y² [ x² y² - 2]²
= as x-> 0 this is = π² y² (-2)² = π² (1/2)² (4) = π²
answer seems to be π²
= cos² [π/2 cos 2x ] = 1/2 * [ 1 + cos ( π cos 2x ) ]
t = π cos 2x as x -> 0, t -> π
x = 1/2 * Cos^-1 ( t/π )
denominator 1/2 x^4
===========================================
Try in some other way: Let us use the Taylor series of expansion for cos x.
cos x = 1 - x² /2 + x^4 /4! - x^6 /6! + .. = 1 - x² y where y = 1/2 - x²/4! + x^4/6! - ...
y -> 1/2 as x->0
So cos² x = (1 + x^4 y² - 2 x² y)
Sin² [ πcos² x ] = sin² [ π + πx^4 y² - 2 π x² y ] sin π+t = - sin t
= sin ² [ πx^4 y² - 2 π x² y ]
Now problem is lim as x-> 0
sin² [πx^4 y² - 2 π x² y ]
= ------------------------------
x^4
sin² [πx^4 y² - 2 π x² y ] [πx^4 y² - 2 π x² y ]²
= ---------------------------------- * ---------------------- multiply & divide by same.
[πx^4 y² - 2 π x² y ]² x^4
= 1² * (πx²y)² [x² y² - 2]² / x^4 = π² y² [ x² y² - 2]²
= as x-> 0 this is = π² y² (-2)² = π² (1/2)² (4) = π²
answer seems to be π²
Similar questions