Math, asked by karthik4297, 1 year ago

 \lim_{x \to \x0}  \frac{ sin^{2} \pi  cos^{2}x  } \sqrt[ \frac{1}{4} ]{x}  [/tex]


kvnmurty: clarify what the argument of Sin function is. Is cos x inside the sin function. Is square root only for 1/4 ? not for x?
kvnmurty: seems to come to 0.. clarify the denominator is it x or xsquare or root x ?
karthik4297: denominator is x to the power 4
karthik4297: yes pi into cosx is inside in sin function
kvnmurty: are you sure denominator has x power 4? is it x square? why do u write root of 1/4? canot you write simply 1/2 ? is there something missing?
karthik4297: yes denominator has x^4
karthik4297: ans is pi^2
kvnmurty: check it now. done

Answers

Answered by kvnmurty
0
Sin² [ πcos² x ] = sin² [ π(1+cos 2x)/2 ]  = sin² [ π/2 + π/2 cos2x]
         = cos² [π/2 cos 2x ]  = 1/2 * [ 1 + cos ( π cos 2x ) ]
t = π cos 2x            as x -> 0,  t -> π
x =  1/2 *  Cos^-1  ( t/π )
denominator 1/2 x^4

===========================================
Try in some other way:  Let us use the Taylor series of expansion for cos x.

cos x = 1 - x² /2 + x^4 /4! - x^6 /6!  + ..  = 1 - x² y      where y = 1/2 - x²/4! + x^4/6! - ...
   y -> 1/2 as x->0
So  cos² x = (1 + x^4  y² - 2 x² y)

Sin² [ πcos² x ] = sin² [ π + πx^4 y² - 2 π x² y ]                        sin π+t = - sin t
         = sin ² [ πx^4 y²  - 2 π x² y ]   
Now problem is    lim as x-> 0

         sin² [πx^4 y²  - 2 π x² y ]  
  =    ------------------------------
                 x^4
          sin² [πx^4 y² - 2 π x² y ]      [πx^4 y² - 2 π x² y ]²
=        ----------------------------------  *  ----------------------                  multiply & divide by same.
            [πx^4 y² - 2 π x² y ]²                    x^4

=     1² *   (πx²y)² [x² y² - 2]²  / x^4   =    π² y² [ x² y² - 2]²
= as x-> 0  this is          =   π² y² (-2)² =     π² (1/2)² (4) =  π²
answer seems to be  π²



karthik4297: it means ?
karthik4297: answer is pi square
Similar questions