Math, asked by kvnmurthy19, 1 year ago

<b>A solid is in the form of a right circular cylinder with a hemisphere one end and a cone at the other end. The radius of the common base is 8 cm. and the heights of the cylindrical and conical portion are 10 cm and 6 cm respectively. Find the total surface area of the solid. (use π = 3.14)}

\boxed{please help }

Answers

Answered by Anonymous
61
CSA of cylinder = 2pie r h

= 2 pie 8 × 10

= 160 pie

Area of hemisphere = 2 pie r^2

= 2 pie 8^2

= 128 pie

Area of conical = pie r l

= pie r √ H^2 + r^2

= pie × 8 × √ 6^2 + 8^2

= 8 pie √ 36 +64

= 80 pie

TSA of solid = 160 pie + 128 pie +80 pie

= 368 pie

=1155.52 cm^2


✌✌✌Dhruv15819✌✌✌✌
Answered by ShuchiRecites
75
Hello Mate!

So, we will start from hemisphere,

Surface area = 2πr²

= 2 × 3.14 × 8²

= × 64

= 401.9 cm²

Now, cylinder's curved surface area = 2πrh

= 2 × 3.14 × 8 × 10 cm²

= 502.4 cm²

Now, finally cone. Cone curved surface area area = πrl

But we have only radius and height so,

l = √( r² + h² )

= √( 8² + 6² )

= √( 64 + 32 )

= √( 100 )

= 10 cm

So, curved surface area = 3.14 × 8 × 10

= 251.2 cm²

Hence, total surface area = ( 401.9 + 502.4 + 251.2 ) cm²

= 1155.5 cm²

Have great future ahead!
Attachments:

ShuchiRecites: Thanks for attempting brainliest kvmurthy19
kvnmurthy19: ok
kvnmurthy19: bro
ShuchiRecites: Something can't be bought from any market Dhruv
laba46: Will you follow me brother? I need your help !!! @Shinchanboss
ShuchiRecites: I am always there to help, send me link in inbox :)
Similar questions