Please help.
I need someone's expert help.
The number 12.
If, cos A + sin A = 1 / 2(cos A - sin A), then find sin^2 A?
Answers
(cosA+sinA)(cosA-sinA) = 1/2
cos^2 A - sin^2 A = 1/2
Now,
cos^2 A = 1 - sin^2 A
Putting this value in the equation further we get,
1-2sin^2 A = 1/2
2 sin^2 A = 1/2
sin^2 A = 1/4
Hope this helps you !
Answer:
♧♧HERE IS YOUR ANSWER♧♧
Trigonometry is the study of angles and its ratios. This study prescribes the relation amongst the sides of a triangle and angles of the triangle.
There are sine, cosine, tangent, cot, sectant and cosec ratios to an angle of a triangle.
Let me tell you an interesting fact about Trigonometry.
"Triangle" > "Trigonometry"
Remember some formulae now :
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1
Want to learn more!
Here it is :
sin(A + B) = sinA cosB + cosA sinB
sin(A - B) = sinA cosB - cosA sinB
cos(A + B) = cosA cosB - sinA sinB
cos(A - B) = cosA cosB + sinA sinB
SOLUTION :
Given :
cosA - sinA = 1
Squaring both sides we get :
(cosA - sinA)² = 1²
=> cos²A - 2cosA sinA + sin²A = 1
=> (cos²A + sin²A) - 2cosA sinA = 1
=> 1 - 2cosA sinA = 1
Now, cancelling 1, we get :
2cosA sinA = 0 .....(i)
Now,
(cosA + sinA)²
= cos²A + 2cosA sinA + sin²A
= cos²A + sin²A + 2×0, by (i)
= 1
Since, sin²A + cos²A always values 1,
cosA + sinA = 1, ≠ -1.
Therefore?
cosA + sinA = 1
Hence, proved.
♧♧HOPE THIS HELPS YOU♧♧