Math, asked by NidhraNair, 1 year ago


 <marquee>hello
Help me in the above attachment..

  \huge\underline\bold \red{question- 8}


thank you ☺

Attachments:

Answers

Answered by Anonymous
10
\bold{\huge{\underline{Correct Question}}}

\bold{1.2+2.2+3.2+.........+n.{2}^{n}=(n-1) {2}^{n+1} + 2}

\bold{\huge{\underline{Define 'n' value of Equation:}}}

Substitute the value of 1 in place of n

\bold{1.2+....=(1-1) \times {2}^{(1+1)} + 2} \\ \\ \bold{0 \times {2}^{2} + 2} \\ \\ \bold{0 \times 4 + 2 = 0} \\ \\ \fbox{0 + 2 = 2} \\ \\ \ \boxed{ \: \: 2 \: \: positive \: \: which \: \: means \: true} \\ \\ \\

Substitute the value of k+1 in place of n!!

 \bold{P(k)=1.2 + {2.2}^{2}+ {3.2}^{3}+ ...+k{2}^{k}= (k-1){2}^{(k+1)}+2 }

Substitute the value of k in place of n!!

 \bold{P(k+1) 1.2 +{2.2}^{2} + {3.2}^{3} + .......+ {k.2}^{k} + (k+1){2}^{k+1}= (k+1-1) {2}^{k+2} +2}

Here, From Equation 1 we gets;

\bold{1.2 + {2.2}{3} + {3.2}^{3} + ...k{2}{^k} = (k-1){2}^{(k+1)} +2}

Now... Adding on both sides:-

\bold{(k+1){2}^{(k+1)}}

\bold{1.2 + {2.2}^{2} + {3.2}^{3} + ........{k.2}^{k}+ {(k+1)2}^{(k+1)}}

\bold{{(k-1).2}^{(k+1)} + 2 + {(k+1)2}^{(k+1)}}

\bold{{2}^{(k+1)}(k-1 + k+1 )+ 2}

\bold{{2}^{(k+1)}2k}

\bold{{2.2}^{(k+1)}k}

\bold{(k+1) - 1 {2}^{(k+1)}+1}

Hence,

\bf{Conclusion:-}

Here,

P(k+1) is true putting value and also p(k) is true

\bold{Note:-}

According to the principle of mathematical induction, statement . Considering on Follow true for all real number.

Anonymous: For better marks it's 100% Absloutely compulsory
NidhraNair: :O
NidhraNair: thanks ☺
Anonymous: Yup!!
NidhraNair: :)
Anonymous: any problem ping me
NidhraNair: it says only great users can start conversionsB-)
NidhraNair: but... thank you soooooooooooooooooooooooooooooooooooooooooooomuch sooooooooooooooooooooooooooooooo soooooooooooooooooooooooooooooooooooooooooooomuch sooooooooooooooooooooooooooooooo soooooooooooooooooooooooooooooooooooooooooooomuch
Anonymous: hahahaha
NidhraNair: ^_^
Answered by riya9896
1

Answer:

10 thanxxx = 10 thanxx + follow ..............

15 thanxx = 20 thanxx + follow ..

Attachments:
Similar questions