Math, asked by Anonymous, 1 year ago

<marquee>HELLO

SØLVE THIS QUESTION ❓

Attachments:

Answers

Answered by arunbanuganesh090
3

Answer:

Step-by-step explanation:

= 3-2√5 / 6 - √5

multiply 6 + √5 on both numerator and denometor

= (3 - 2√5) x 6 + √5

-----------------------------

  (6 - √5) x 6  + √5

= 18 + 3√5 - 12√5 -10

-------------------------------

     6² - (√5) ²

= 8 - 9√5

--------------

 36 - 5

= 8 -9√5 / 31

so sub in a+ b√5

a = 8/31  and b = -9/31


Anonymous: thanx very much
arunbanuganesh090: please???????
Anonymous: what
arunbanuganesh090: pleasw m a r k brain l i st
arunbanuganesh090: please
arunbanuganesh090: mark
arunbanuganesh090: brain list
Answered by siddhartharao77
7

Step-by-step explanation:

Given: \frac{3-2\sqrt{5}}{6-\sqrt{5}} = a + b\sqrt{5}

\Rightarrow \frac{3-2\sqrt{5}}{6-\sqrt{5}} * \frac{6+\sqrt{5}}{6+\sqrt{5}} = a + b\sqrt{5}

\Rightarrow \frac{(3-2\sqrt{5})(6+\sqrt{5})}{(6-\sqrt{5})(6+\sqrt{5})} = a+b\sqrt{5}

\Rightarrow \frac{18+3\sqrt{5}-12\sqrt{5}-10}{(6)^2-(\sqrt{5})^2}

\Rightarrow \frac{8-9\sqrt{5}}{31} = a+b\sqrt{5}

\Rightarrow \frac{8}{31}+\frac{-9}{31}\sqrt{5}= a+b\sqrt{5}

On comparing both sides, we get

a = (8/31), b = (-9/31)

Hope it helps!


Anonymous: thanx very much
siddhartharao77: Its ok
Similar questions