Math, asked by Anonymous, 6 months ago

 {\mathbb{\colorbox {violet} {\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {green} {QuEsTiOn}}}}}}}}}}}}}}
The altitude of a right angle triangle is 17cm less than its base. If the hupotenuese is 25cm. Find the other two sides..................

Answers

Answered by Anonymous
5

 \star\underline{\mathtt\orange{❥Q} \mathfrak\blue{u }\mathfrak\blue{E} \mathbb\purple{ s}\mathtt\orange{T} \mathbb\pink{iOn}}\star\:

The altitude of a right angle triangle is 17cm less than its base. If the hupotenuese is 25cm. Find the other two sides

 { \color{aqua} { \underbrace{ \underline{ \color{lime}{ \mathbb{\star SoLuTiOn\star }}}}}}

let \: the \: base \: be \: 4x

altitude \: be \: x - 17

 In \: \triangle ABC, \angle B =90°

 By \:Pythagoras \: Theorem

 {AC}^{2}={AB}^{2}+{BC}^{2}

 {25}^{2}  =  {(x - 17)}^{2}  +  {(x)}^{2}

625 =  {x}^{2}  +  {(17)}^{2}  - 2(x)(17) +{x}^{2}

625 =  {x}^{2}  + 289  - 34x +  {x}^{2}

625 = 2 {x}^{2}  + 289 - 34x

2 {x}^{2}  - 34x + 289 - 625 = 0

2 {x}^{2}  - 34x - 336 = 0

this \: is \: in \: the \: form \: of \\ a {x}^{2}  + bx + c = 0

a = 2 \\ b =  - 34 \\ c =  - 336

x =  \frac{ - b± \sqrt{ {b}^{2} - 4ac } }{2a}

x =  \frac{ -( -  34)± \sqrt{ {( - 34)}^{2}  - 4(2) (- 366)} }{2(2)}

x =  \frac{34± \sqrt{1156 + 2688} }{4}

x =  \frac{34± \sqrt{3844} }{4}

x =  \frac{34±62}{4}

x =  \frac{34 + 62}{4}  \:  \: or \:  \: x =  \frac{34 - 62}{4}

x =  \frac{96}{4}  \:  \: or \:  \: x =  \frac{ - 32}{4}

{\boxed {\boxed {x = 24 \:  \: or \:  \:  x = - 8}}}

 \blue{\boxed{\blue{ \bold{\fcolorbox{red}{black}{\green{Hope\:It\:Helps}}}}}}

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5069}}}}}}}}}}}}}}}

Answered by plal8960
8

Answer:

The altitude of a right angle triangle is 17cm less than its base. If the hupotenuese is 25cm. Find the other two sides

{ \color{aqua} { \underbrace{ \underline{ \color{lime}{ \mathbb{\star SoLuTiOn\star }}}}}}

⋆SoLuTiOn⋆

let \: the \: base \: be \: 4xletthebasebe4x

altitude \: be \: x - 17altitudebex−17

In \: \triangle ABC, \angle B =90°In△ABC,∠B=90°

By \:Pythagoras \: TheoremByPythagorasTheorem

{AC}^{2}={AB}^{2}+{BC}^{2}AC

2

=AB

2

+BC

2

{25}^{2} = {(x - 17)}^{2} + {(x)}^{2}25

2

=(x−17)

2

+(x)

2

625 = {x}^{2} + {(17)}^{2} - 2(x)(17) +{x}^{2}625=x

2

+(17)

2

−2(x)(17)+x

2

625 = {x}^{2} + 289 - 34x + {x}^{2}625=x

2

+289−34x+x

2

625 = 2 {x}^{2} + 289 - 34x625=2x

2

+289−34x

2 {x}^{2} - 34x + 289 - 625 = 02x

2

−34x+289−625=0

2 {x}^{2} - 34x - 336 = 02x

2

−34x−336=0

\begin{lgathered}this \: is \: in \: the \: form \: of \\ a {x}^{2} + bx + c = 0\end{lgathered}

thisisintheformof

ax

2

+bx+c=0

\begin{lgathered}a = 2 \\ b = - 34 \\ c = - 336\end{lgathered}

a=2

b=−34

c=−336

x = \frac{ - b± \sqrt{ {b}^{2} - 4ac } }{2a}x=

2a

−b±

b

2

−4ac

x = \frac{ -( - 34)± \sqrt{ {( - 34)}^{2} - 4(2) (- 366)} }{2(2)}x=

2(2)

−(−34)±

(−34)

2

−4(2)(−366)

x = \frac{34± \sqrt{1156 + 2688} }{4}x=

4

34±

1156+2688

x = \frac{34± \sqrt{3844} }{4}x=

4

34±

3844

x = \frac{34±62}{4}x=

4

34±62

x = \frac{34 + 62}{4} \: \: or \: \: x = \frac{34 - 62}{4}x=

4

34+62

orx=

4

34−62

x = \frac{96}{4} \: \: or \: \: x = \frac{ - 32}{4}x=

4

96

orx=

4

−32

{\boxed {\boxed {x = 24 \: \: or \: \: x = - 8}}}

x=24orx=−8

\blue{\boxed{\blue{ \bold{\fcolorbox{red}{black}{\green{Hope\:It\:Helps}}}}}}

HopeItHelps

Similar questions