The altitude of a right angle triangle is 17cm less than its base. If the hupotenuese is 25cm. Find the other two sides..................
Answers
The altitude of a right angle triangle is 17cm less than its base. If the hupotenuese is 25cm. Find the other two sides
Answer:
The altitude of a right angle triangle is 17cm less than its base. If the hupotenuese is 25cm. Find the other two sides
{ \color{aqua} { \underbrace{ \underline{ \color{lime}{ \mathbb{\star SoLuTiOn\star }}}}}}
⋆SoLuTiOn⋆
let \: the \: base \: be \: 4xletthebasebe4x
altitude \: be \: x - 17altitudebex−17
In \: \triangle ABC, \angle B =90°In△ABC,∠B=90°
By \:Pythagoras \: TheoremByPythagorasTheorem
{AC}^{2}={AB}^{2}+{BC}^{2}AC
2
=AB
2
+BC
2
{25}^{2} = {(x - 17)}^{2} + {(x)}^{2}25
2
=(x−17)
2
+(x)
2
625 = {x}^{2} + {(17)}^{2} - 2(x)(17) +{x}^{2}625=x
2
+(17)
2
−2(x)(17)+x
2
625 = {x}^{2} + 289 - 34x + {x}^{2}625=x
2
+289−34x+x
2
625 = 2 {x}^{2} + 289 - 34x625=2x
2
+289−34x
2 {x}^{2} - 34x + 289 - 625 = 02x
2
−34x+289−625=0
2 {x}^{2} - 34x - 336 = 02x
2
−34x−336=0
\begin{lgathered}this \: is \: in \: the \: form \: of \\ a {x}^{2} + bx + c = 0\end{lgathered}
thisisintheformof
ax
2
+bx+c=0
\begin{lgathered}a = 2 \\ b = - 34 \\ c = - 336\end{lgathered}
a=2
b=−34
c=−336
x = \frac{ - b± \sqrt{ {b}^{2} - 4ac } }{2a}x=
2a
−b±
b
2
−4ac
x = \frac{ -( - 34)± \sqrt{ {( - 34)}^{2} - 4(2) (- 366)} }{2(2)}x=
2(2)
−(−34)±
(−34)
2
−4(2)(−366)
x = \frac{34± \sqrt{1156 + 2688} }{4}x=
4
34±
1156+2688
x = \frac{34± \sqrt{3844} }{4}x=
4
34±
3844
x = \frac{34±62}{4}x=
4
34±62
x = \frac{34 + 62}{4} \: \: or \: \: x = \frac{34 - 62}{4}x=
4
34+62
orx=
4
34−62
x = \frac{96}{4} \: \: or \: \: x = \frac{ - 32}{4}x=
4
96
orx=
4
−32
{\boxed {\boxed {x = 24 \: \: or \: \: x = - 8}}}
x=24orx=−8
\blue{\boxed{\blue{ \bold{\fcolorbox{red}{black}{\green{Hope\:It\:Helps}}}}}}
HopeItHelps