Math, asked by Anonymous, 1 year ago

{\mathbb{\huge{QUESTION\: :-}}}

if \: cos \: A \: + sin \: A \: = \frac{1}{2(cos \: A - sin \: A)} \\ \\(0 < A < 90) \\ \\ then \: find \: the \: value \: of \: {sin}^{2} A

{\texttt{\large{Please help}}}

^_^

Answers

Answered by Anonymous
2
hey mate

refer to attachment
Attachments:

Anonymous: can you please help me understand 3 rd line 2 [ .....
Anonymous: the second bracket
Anonymous: thanks , ^_^
Answered by siddhartharao77
1

Answer:

⇒ (1/4) (or) 30°.

Step-by-step explanation:

Given Equation is cos A + sinA = 1/2(cosA - sinA)

⇒ (cosA + sinA)(cosA + sinA) = (1/2)

⇒ cos²A - sin²A = (1/2)

⇒ (1 - sin²A) - sin²A = (1/2)

⇒ 1 - sin²A - sin²A = (1/2)

⇒ 1 - 2sin²A = (1/2)

⇒ -2sin²A = (1/2) - 1

⇒ -2sin²A = -1/2

⇒ sin²A = 1/4.

(or)

⇒ sinA = (1/2)

⇒ A = 30° {0 < A < 90°}


Therefore, sin² A = (1/4) and A = 30°.


Hope it helps!


Anonymous: Thanks ^_^!!!!!!
siddhartharao77: Welcome!
siddhartharao77: No one can put that. Randomly Questions will be picked!. Have a nice day dude!
Similar questions