Answers
Given :
sec θ + tan θ = p ..................( 1 )
Multiplying both sides by ( sec θ - tan θ ) we get :
➡( sec θ - tan θ )( sec θ + tan θ ) = p ( sec θ - tan θ )
Use the identity of ( a + b )( a - b ) = a² - b²
➡sec² θ - tan² θ = p ( sec θ - tan θ )
We know that sec²θ - tan²θ = 1
➡1 = p ( sec θ - tan θ )
sec θ - tan θ = 1 / p .................. ( 2 )
Adding ( 1 ) and ( 2 ) we get :
➡2 sec θ = p + 1 / p
➡sec θ = 1 / cos θ
➡2 / cos θ = p + 1 / p
➡2 / cos θ = ( p² + 1 ) / p
➡cos θ / 2 = p / ( p² + 1 )
➡cos θ = 2 p / ( p² + 1 )
Square both sides :
➡cos²θ = 4 p² / ( p² + 1 )²
Multiply both sides by -1
➡ - cos²θ = - 4 p² / ( p² + 1 )²
Add 1 both sides :
➡1 - cos²θ = - 4 p² / ( p² + 1 )²+ 1
We know that 1 - cos²θ = sin²θ
➡sin²θ = [ - 4 p² + ( p² + 1 )² ] / ( p² + 1 )²
➡sin² θ = [ - 4 p² + p⁴ + 2 p² + 1 ] / ( p² + 1 )²
➡sin² θ = [ p⁴ - 2 p² + 1 ] / ( p² + 1 )²
➡sin² θ = ( p² - 1 )² / ( p² + 1 )²
By invertendo :
➡1 / sin²θ = ( p² + 1 )² / ( p² - 1 )²
Take square root both sides :
➡1 / sin θ = ( p² + 1 ) / ( p² - 1 )
We know that 1 / sin θ = cosec θ
➡cosec θ = ( p² + 1 ) / ( p² - 1 )