It is given that angle xyz = 64° and XY Is produced to point P. Draw a figure from the given information .If ray YQ bisects angle ZYP, find angle XYQ and reflex of angle QYP.
Answers
Step-by-step explanation:
Given,
∠XYZ=64°
YQ bisects ∠ZYP
∠XYZ+∠ZYP=180°
(Linear Pair)
⇒64°+∠ZYP=180°
∠ZYP=116°
Also, ∠ZYP=∠ZYQ+∠QYP
∠ZYQ=∠QYP (YQ bisects∠ZYP)
⇒∠ZYP=2∠ZYQ
⇒2∠ZYQ=116°
⇒∠ZYQ=58°
=∠QYP
Now, ∠XYQ=∠XYZ+∠ZYQ
⇒∠XYQ=64°+58°
⇒∠XYQ=122°
Also, reflex ∠QYP=180° +∠XYQ
∠QYP=180°+122°
⇒∠QYP=302°
___________
this is your answer.
Given,
Given,∠XYZ=64°
Given,∠XYZ=64°YQ bisects ∠ZYP
Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°
Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)
Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°
Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°
Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP
Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)
Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ
Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°
Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°⇒∠ZYQ=58°
Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°⇒∠ZYQ=58°=∠QYP
Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°⇒∠ZYQ=58°=∠QYPNow, ∠XYQ=∠XYZ+∠ZYQ
Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°⇒∠ZYQ=58°=∠QYPNow, ∠XYQ=∠XYZ+∠ZYQ⇒∠XYQ=64°+58°
Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°⇒∠ZYQ=58°=∠QYPNow, ∠XYQ=∠XYZ+∠ZYQ⇒∠XYQ=64°+58°⇒∠XYQ=122°
Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°⇒∠ZYQ=58°=∠QYPNow, ∠XYQ=∠XYZ+∠ZYQ⇒∠XYQ=64°+58°⇒∠XYQ=122°Also, reflex ∠QYP=180° +∠XYQ
Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°⇒∠ZYQ=58°=∠QYPNow, ∠XYQ=∠XYZ+∠ZYQ⇒∠XYQ=64°+58°⇒∠XYQ=122°Also, reflex ∠QYP=180° +∠XYQ∠QYP=180°+122°
Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°⇒∠ZYQ=58°=∠QYPNow, ∠XYQ=∠XYZ+∠ZYQ⇒∠XYQ=64°+58°⇒∠XYQ=122°Also, reflex ∠QYP=180° +∠XYQ∠QYP=180°+122°⇒∠QYP=302°.
mark as brainlist answer