Math, asked by Anonymous, 1 month ago


{\mathfrak{\red{\clubs{\large{\underline{Question}}}}}}
It is given that angle xyz = 64° and XY Is produced to point P. Draw a figure from the given information .If ray YQ bisects angle ZYP, find angle XYQ and reflex of angle QYP.


{\sf{\green{Need \:  High -Quality \:  answers. }}}
{\sf{\red{No  \: spams}}}
{\sf{\blue{Intelligent  \: users  \: answer \:  it. }}}

Answers

Answered by OoIndianJocKersoO
6

Step-by-step explanation:

Given,

∠XYZ=64°

YQ bisects ∠ZYP

∠XYZ+∠ZYP=180°

(Linear Pair)

⇒64°+∠ZYP=180°

∠ZYP=116°

Also, ∠ZYP=∠ZYQ+∠QYP

∠ZYQ=∠QYP (YQ bisects∠ZYP)

⇒∠ZYP=2∠ZYQ

⇒2∠ZYQ=116°

⇒∠ZYQ=58°

=∠QYP

Now, ∠XYQ=∠XYZ+∠ZYQ

⇒∠XYQ=64°+58°

⇒∠XYQ=122°

Also, reflex ∠QYP=180° +∠XYQ

∠QYP=180°+122°

⇒∠QYP=302°

___________

\large\sf\fbox\purple{Hope \: It  \: Helps}

\huge\sf\red{Thank \: You!}

Attachments:
Answered by 002PRADEEP200
6

this is your answer.

Given,

Given,∠XYZ=64°

Given,∠XYZ=64°YQ bisects ∠ZYP

Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°

Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)

Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°

Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°

Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP

Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)

Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ

Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°

Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°⇒∠ZYQ=58°

Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°⇒∠ZYQ=58°=∠QYP

Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°⇒∠ZYQ=58°=∠QYPNow, ∠XYQ=∠XYZ+∠ZYQ

Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°⇒∠ZYQ=58°=∠QYPNow, ∠XYQ=∠XYZ+∠ZYQ⇒∠XYQ=64°+58°

Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°⇒∠ZYQ=58°=∠QYPNow, ∠XYQ=∠XYZ+∠ZYQ⇒∠XYQ=64°+58°⇒∠XYQ=122°

Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°⇒∠ZYQ=58°=∠QYPNow, ∠XYQ=∠XYZ+∠ZYQ⇒∠XYQ=64°+58°⇒∠XYQ=122°Also, reflex ∠QYP=180° +∠XYQ

Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°⇒∠ZYQ=58°=∠QYPNow, ∠XYQ=∠XYZ+∠ZYQ⇒∠XYQ=64°+58°⇒∠XYQ=122°Also, reflex ∠QYP=180° +∠XYQ∠QYP=180°+122°

Given,∠XYZ=64°YQ bisects ∠ZYP∠XYZ+∠ZYP=180°(Linear Pair)⇒64°+∠ZYP=180°∠ZYP=116°Also, ∠ZYP=∠ZYQ+∠QYP∠ZYQ=∠QYP (YQ bisects∠ZYP)⇒∠ZYP=2∠ZYQ⇒2∠ZYQ=116°⇒∠ZYQ=58°=∠QYPNow, ∠XYQ=∠XYZ+∠ZYQ⇒∠XYQ=64°+58°⇒∠XYQ=122°Also, reflex ∠QYP=180° +∠XYQ∠QYP=180°+122°⇒∠QYP=302°.

mark as brainlist answer

Similar questions