Math, asked by Anonymous, 7 months ago

\mathtt{\huge\star{\red{\underline{Question}}}}\huge\star
\huge \: Integrate

\huge\frac{1}{{\sqrt{9 - 25{x}^{2}}}}

Answers

Answered by Anonymous
0

Step-by-step explanation:

\huge\int\frac{1}{{\sqrt{9 - 25{x}^{2}}}}dx

=\huge\int\frac{1}{{\sqrt{25 - (\frac{9}{25} - {x}^{2})}}}

=\huge\frac{1}{5}\int\frac{1}{{\sqrt{\frac{{3}{5}}^{2} - {x}^{2}dx

=\huge\frac{1}{5}sin-¹ \huge\frac{x}{3/5} + C

= \huge\frac{1}{5}sin{inv}{1}frac{5x}{3} + C

\huge\red{\boxed{\green{\mathbb{\overbrace{\underbrace{\fcolorbox{pink}{aqua}{\underline{\red{Hope it helps}}}}}}}}}

Answered by Anonymous
3

 \huge\int\frac{1}{{\sqrt{9 - 25{x}^{2}}}}dx

= \huge\int\frac{1}{{\sqrt{25 - (\frac{9}{25} - {x}^{2})}}}

=\huge\frac{1}{5}\frac{1} {{\sqrt{\frac{{3}{5}}^{2}} - {x}^{2}}}} dx

= \huge\frac{1}{5}

=  sin-¹ \huge\frac{x}{3/5} + C

=  \huge\frac{1}{5}sin{inv}{1}frac{5x}{3} + C

 \huge\blue{\boxed{\blue{ \bold{\fcolorbox{red}{black}{\green{☺︎︎Hope\:It\:Helps☺︎︎}}}}}}

Pls Mark as brainest answer and follow me pls

Similar questions