![\mathtt{\large{ \red{\underline{\underline{question : }}}}} \\ \\ \bigstar \sf \: find \: the \: dimension \: of \: \alpha \\ \\ \displaystyle \sf \longrightarrow \: \alpha \: in \: p = p0 {e}^{ - \alpha {t}^{2} } \\ \\ \displaystyle \sf \longrightarrow \: where \: t = time \: and \: p0 \: = p \: not \mathtt{\large{ \red{\underline{\underline{question : }}}}} \\ \\ \bigstar \sf \: find \: the \: dimension \: of \: \alpha \\ \\ \displaystyle \sf \longrightarrow \: \alpha \: in \: p = p0 {e}^{ - \alpha {t}^{2} } \\ \\ \displaystyle \sf \longrightarrow \: where \: t = time \: and \: p0 \: = p \: not](https://tex.z-dn.net/?f=+%5Cmathtt%7B%5Clarge%7B+%5Cred%7B%5Cunderline%7B%5Cunderline%7Bquestion++%3A+%7D%7D%7D%7D%7D+%5C%5C++%5C%5C++%5Cbigstar+%5Csf+%5C%3A+find+%5C%3A+the+%5C%3A+dimension+%5C%3A+of+%5C%3A++%5Calpha+%5C%5C++%5C%5C++%5Cdisplaystyle+%5Csf+%5Clongrightarrow+%5C%3A++%5Calpha+%5C%3A+in+%5C%3A+p+%3D+p0+%7Be%7D%5E%7B+-++%5Calpha++%7Bt%7D%5E%7B2%7D+%7D++%5C%5C++%5C%5C++%5Cdisplaystyle+%5Csf+%5Clongrightarrow+%5C%3A+where+%5C%3A+t+%3D+time++%5C%3A+and+%5C%3A+p0+%5C%3A++%3D+p+%5C%3A+not)
Koi toh solve kr do
Answers
Answered by
5
Answer:
Explanation:
Given:
t → Time
Dimensional formula of time = [T]
As we know exponential functions are dimensionless.
is dimensionless i.e.
Answered by
2
Dimension of time = [T]
we know that exponential functions are dimensionless
so, αt² = dimensionless = [M⁰L⁰T⁰]
[αT²] = [M⁰L⁰T⁰]
α = [M⁰L⁰T⁰]/T²
α = [M⁰L⁰T`²]
α = [T^-2]
Similar questions