Math, asked by fahmida001, 9 months ago


please \: do \: fast

Attachments:

Answers

Answered by Anonymous
2

\red{  (\frac{ - 3}{5}  {)}^{ - 4} } \times ( \frac{ - 2}{5}  {)}^{2}

 \tt express \: with \: a \: positive \:  \orange {\underline {exponent}} \\  \tt using {( \frac{a}{b} )}^{ - n}  =   { (\frac{b}{a} )}^{n}

\red{  (\frac{ 5}{ - 3}  {)}^{ - 4} } \times ( \frac{ - 2}{5}  {)}^{2}

 \tt to \: raise \: the \:  \:  \orange {\underline {fraction}}  \: to \: a \:  \orange {\underline {power}},  \\  \tt raise \: the \:  \orange {\underline {numerator}} \: and \:  \orange {\underline {denominator}} \\  \tt to \: that \: power

  (\frac{ 5}{ - 3}  {)^{ - 4} } \times  \red{ ( \frac{ 4}{25} ) }

  \red{\frac{ 625}{ 80} \times    \frac{ 4}{25} }

 \tt reduce \: the \: no. \: with \: the \\  \tt  \orange {\underline {greatest \: common \: factor}}25

\frac{  \cancel  \red{625}}{ 80} \times    \frac{ 4}{ \cancel \red{ 25} }

 \frac{ \red{ 25}}{81}  \times 4

 \tt calculate \: the \:   \orange {\underline {product}}

 \red{  \frac{100}{81} }

 \tt \red{  solution}

\frac{100}{81}

 \tt \red{  alternate \: form}

1 \times \frac{19}{81} ,1. \dot 23456790 \dot 1,( \frac{10}{9}  {)}^{2}

Similar questions