Math, asked by sabah13, 3 months ago


prove \: that \:  \frac{sin \: x \:  +  \: sin \: 3x}{cos \: x \:  +  \: cos \: 3x}  =  \: tan \: 2x

Answers

Answered by assingh
21

Topic :-

Trigonometry

To Prove :-

\dfrac{\sin x + \sin 3x}{\cos x + \cos 3x}=\tan 2x

Formula to be Used :-

\sin A + \sin B =2\sin \left ( \dfrac{A+B}{2}\right )\cos \left ( \dfrac{A-B}{2}\right )

\cos A+ \cos B =2\cos \left ( \dfrac{A+B}{2}\right )\cos \left ( \dfrac{A-B}{2}\right )

Proof :-

Solving LHS,

\dfrac{\sin x + \sin 3x}{\cos x + \cos 3x}

Applying formula,

\dfrac{2\sin \left ( \dfrac{x+3x}{2}\right )\cos \left ( \dfrac{x-3x}{2}\right )}{2\cos \left ( \dfrac{x+3x}{2}\right )\cos \left ( \dfrac{x-3x}{2}\right )}

\dfrac{2\sin \left ( \dfrac{4x}{2}\right )\cos \left ( \dfrac{-2x}{2}\right )}{2\cos \left ( \dfrac{4x}{2}\right )\cos \left ( \dfrac{-2x}{2}\right )}

\dfrac{2\sin \left ( 2x\right )\cos \left ( -x\right )}{2\cos \left ( 2x\right )\cos \left ( -x\right )}

Canceling 2cos(-x),

\dfrac{\sin 2x}{\cos 2x}

\tan 2x

\left ( \because \dfrac{ \sin \theta}{\cos \theta}=\tan \theta\right )

RHS,

\tan 2x

We observe that LHS = RHS.

Hence, Proved !!

Additional Formulae :-

\sin A - \sin B =2\cos \left ( \dfrac{A+B}{2}\right )\sin \left ( \dfrac{A-B}{2}\right )

\cos A - \cos B =2\sin \left ( \dfrac{A+B}{2}\right )\sin \left ( \dfrac{B-A}{2}\right )

Similar questions