Math, asked by Anonymous, 9 months ago


 \purple{ \large{Answer \: the \:  question}}
 \pink{ Don’t  \: forget \:  the \:  correct  \: sign,}
 \pink{Math \:  is \:  so \:  easy \:  it’s  \: divine.}

Attachments:

Answers

Answered by AdorableMe
70

\bigstar \underline{\underline{\sf{DIAGRAM}}}

\setlength{\unitlength}{20} \begin{picture}(6,6)\put(5,1){\line(1,0){3.5}}\put(5,1){\line(0,1){3.5}}\put(5,4.5){\line(1,-1){3.5}} \put(5,1){\line(-1,0){6.95}}\put(5,4.5){\line(-2,-1){6.95}}\put(5.5,1){\line(0,1){0.4}}\put(4.5,1){\line(0,1){0.4}}\put(4.5,1.4){\line(1,0){1}}\put(4.75,0.5){ $ \bf C $ }\put(8.25,0.5){$ \bf D $}\put(-2,0.5){$ \bf B $}\put(5,4.75){$ \bf A $}\put(1,0.5){\vector(-1,0){2.5}}\put(2.4,0.5){\vector(1,0){2.5}}\put(1,0.4){ $ \tt 15 \: cm $ }\end{picture}

\sf{(i)\:\: sin\ B=\dfrac{4}{5} }

We know,

◘ sin θ = Perpendicular/Hypotenuse

⇒ sin θ = p/h

⇒ sin B = p/h

⇒ p/h = 4/5

AC = 4x cm and AB = 5x cm

Applying Pythagoras theorem :

AB² = BC² + AC²

⇒ (5x)² = BC² + (4x)²

⇒ 25x² = BC² + 16x²

⇒ BC² = 25x² - 16x²

⇒ BC² = 9x²

BC = 3x

Now,

BC = 15 cm = 3x

⇒ x = 15/3

x = 5

◘ Substituting the value of x :-

AB = 5x = 25 cm

AC = 4x = 20 cm

______________________

tan ∠ADC = 1

⇒ AC/CD = 1

⇒ AC = CD

Let AC = CD = k.

Applying Pythagoras theorem in Δ ACD,

⇒ (AD)² = (AC)² + (CD)²

⇒ AD² = k² + k²

⇒ AD² = 2k²

⇒ AD = √2k

From (i), we got that AC = 20 cm

→ k = 20 cm

⇒ AD = √2 × 20

⇒ AD = 20√2 cm

CD = k = 20 cm

______________________

tan B = p/b = AC/BC

⇒ tan B = 20/15

⇒ tan B = 4/3

cos B = b/h = BC/AB

⇒ cos B = 15/25

⇒ cos B = 3/5

\sf{tan^2B-\dfrac{1}{cos^2B} }\\\\\displaystyle{\sf{=  \bigg(\frac{4}{3}  \bigg)^2-\frac{1}{(3/5)^2}  }}\\\\\displaystyle{\sf{=  \frac{16}{9}-\frac{1}{9/25}  }}\\\\\displaystyle{\sf{= \frac{16}{9}-\frac{25}{9}   }}\\\\\displaystyle{\sf{=  \frac{16-25}{9} }}\\\\\displaystyle{\sf{=  \frac{-9}{9} }}\\\\\displaystyle{\sf{=  1=RHS}}


Rohit18Bhadauria: Wonderful diagram
Answered by Rohit18Bhadauria
35

Given:

  • BC= 15cm
  • \rm{sin\ B=\dfrac{4}{5}}

To Find:

i) Measurement of AB and AC

ii) Measurement of CD and AD, if tan(∠ADC)=1

To Prove:

\longrightarrow\bf{tan^{2}\ B-\dfrac{1}{cos^{2}\ B}=-1}

Solution:

In ΔABC,

\longrightarrow\rm{cos\ B=\sqrt{1-sin^{2}B}}

\longrightarrow\rm{cos\ B=\sqrt{1-\bigg(\dfrac{4}{5}\bigg)^{2}}}

\longrightarrow\rm{cos\ B=\sqrt{1-\dfrac{16}{25}}}

\longrightarrow\rm{cos\ B=\sqrt{\dfrac{25-16}{25}}}

\longrightarrow\rm{cos\ B=\sqrt{\dfrac{9}{25}}}

\longrightarrow\rm{cos\ B=\dfrac{3}{5}}

Now,

\longrightarrow\rm{cos\ B=\dfrac{BC}{AB}}

\longrightarrow\rm{\dfrac{3}{5}=\dfrac{15}{AB}}

\longrightarrow\rm{AB=\dfrac{15\times5}{3}}

\longrightarrow\rm\green{AB=25\ cm}

Now,

\longrightarrow\rm{sin\ B=\dfrac{AC}{AB}}

\longrightarrow\rm{\dfrac{4}{5}=\dfrac{AC}{25}}

\longrightarrow\rm{\dfrac{4\times25}{5}=AC}

\longrightarrow\rm{AC=\dfrac{4\times25}{5}}

\longrightarrow\rm\green{AC=20\ cm}

━━━━━━━━━━━━━━━━━━━━━

Now, In ΔACD

tan(∠ADC)=1

That means,

∠ADC= 45°

Or

D= 45°

So,

\longrightarrow\rm{tan\ D=\dfrac{AC}{CD}}

\longrightarrow\rm{tan\ 45^{\circ}=\dfrac{20}{CD}}

\longrightarrow\rm{1=\dfrac{20}{CD}}

\longrightarrow\rm\green{CD=20\ cm}

Now,

\longrightarrow\rm{sin\ D=\dfrac{AC}{AD}}

\longrightarrow\rm{sin\ 45^{\circ}=\dfrac{20}{AD}}

\longrightarrow\rm{\dfrac{1}{\sqrt{2}} =\dfrac{20}{AD}}

\longrightarrow\rm\green{AD=20\sqrt{2}\ cm}

━━━━━━━━━━━━━━━━━━━━━

Now, we know that,

  • \pink{\underline{\boxed{\bf{1+tan^{2}\theta=sec^{2}\theta}}}}
  • \purple{\underline{\boxed{\bf{sec \theta}=\dfrac{1}{cos\theta}}}}

So, by using above properties

\longrightarrow\rm{1+tan^{2}B=sec^{2}B}

\longrightarrow\rm{tan^{2}B-sec^{2}B=-1}

\longrightarrow\rm{tan^{2}B-\bigg(\dfrac{1}{cosB} \bigg)^{2}=-1}

\longrightarrow\rm{tan^{2}B-\dfrac{1}{cos^{2}B}=-1}

\bigstar\bf\red{Hence\ Proved}

Similar questions