Answers
We know,
◘ sin θ = Perpendicular/Hypotenuse
⇒ sin θ = p/h
⇒ sin B = p/h
⇒ p/h = 4/5
⇒ AC = 4x cm and AB = 5x cm
Applying Pythagoras theorem :
AB² = BC² + AC²
⇒ (5x)² = BC² + (4x)²
⇒ 25x² = BC² + 16x²
⇒ BC² = 25x² - 16x²
⇒ BC² = 9x²
⇒ BC = 3x
Now,
BC = 15 cm = 3x
⇒ x = 15/3
⇒ x = 5
◘ Substituting the value of x :-
AB = 5x = 25 cm
AC = 4x = 20 cm
______________________
tan ∠ADC = 1
⇒ AC/CD = 1
⇒ AC = CD
Let AC = CD = k.
Applying Pythagoras theorem in Δ ACD,
⇒ (AD)² = (AC)² + (CD)²
⇒ AD² = k² + k²
⇒ AD² = 2k²
⇒ AD = √2k
From (i), we got that AC = 20 cm
→ k = 20 cm
⇒ AD = √2 × 20
⇒ AD = 20√2 cm
CD = k = 20 cm
______________________
tan B = p/b = AC/BC
⇒ tan B = 20/15
⇒ tan B = 4/3
cos B = b/h = BC/AB
⇒ cos B = 15/25
⇒ cos B = 3/5
Given:
- BC= 15cm
To Find:
i) Measurement of AB and AC
ii) Measurement of CD and AD, if tan(∠ADC)=1
To Prove:
Solution:
In ΔABC,
Now,
Now,
━━━━━━━━━━━━━━━━━━━━━
Now, In ΔACD
tan(∠ADC)=1
That means,
∠ADC= 45°
Or
D= 45°
So,
Now,
━━━━━━━━━━━━━━━━━━━━━
Now, we know that,
So, by using above properties