Science, asked by thapaavinitika6765, 8 months ago

rational\:roots\:x^3-7x+6

solve

Answers

Answered by Anonymous
1

\mathrm{Rational\:root\:test}:\quad x^3-7x+6\quad :\quad x=1,\:x=2,\:x=-3

\mathrm{For\:a\:polynomial\:equation\:with\:integer\:coefficients:\quad }a_nx^n+a_{n-1}x^{n-1}+\ldots +a_0

a_0=6,\:\quad a_n=1

\mathrm{The\:dividers\:of\:}a_0:\quad 1,\:2,\:3,\:6,\:\quad \mathrm{The\:dividers\:of\:}a_n:\quad 1

\mathrm{The\:following\:rational\:numbers\:are\:candidate\:roots:}\quad \pm \frac{1,\:2,\:3,\:6}{1}

\mathrm{Validate\:the\:roots\:by\:plugging\:them\:into}\:x^3-7x+6=0:\quad x=1,\:x=2,\:x=-3

x=1,\:x=2,\:x=-3

Answered by Anonymous
2

Explanation:

 \sf \: rational\:roots\:x^3-7x+6 \\  \\  \sf \to \: x( {x}^{2}  - 7) + 6 \\  \\ \sf \to \: \: (x  + 6)( {x}^{2}  - 7) \\  \\ \sf \to \red{x \:  =  - 6 \: and \: x =  \sqrt{7} }

Similar questions