Math, asked by princeyadav5535dy, 9 months ago


rationalise \: the \: denominator \:  \\  \frac{1}{ \sqrt{7 -  \sqrt{6} } }

Answers

Answered by Anonymous
1

\sf\huge\orange{\underbrace{ Solution : }}

\sf \implies \cfrac{1}{\sqrt{7} - \sqrt{6}}

  • Multiply both numerator and denominator with √7 + √6.

\sf \implies \cfrac{1}{\sqrt{7} - \sqrt{6}} \times \cfrac{\sqrt{7}+ \sqrt{6}}{\sqrt{7}+ \sqrt{6}}

\sf \implies \cfrac{\sqrt{7} + \sqrt{6}}{(\sqrt{7}-\sqrt{6})(\sqrt{7} + \sqrt{6})}

  • (a - b)(a + b) = a² - b²

\sf \implies \cfrac{\sqrt{7}+\sqrt{6}}{(\sqrt{7})^{2} - (\sqrt{6})^{2}}

\sf \implies \cfrac{\sqrt{7}+\sqrt{6}}{7-6}

\sf \implies \sqrt{7}+\sqrt{6}

\underline{\boxed{\rm{\purple{\therefore \cfrac{1}{\sqrt{7} - \sqrt{6}} = \sqrt{7}+\sqrt{6}.}}}}\:\orange{\bigstar}

Similar questions