Chemistry, asked by BrainlyProgrammer, 4 months ago

 \red{ \bold{ \underbrace{ \overbrace{ \underline{ \orange{Urgent \: Help \: Request!!!}}}}}}
[Chemistry]

Calculate the volume of dry air at S.T.P. that occupies 28 cm3 at 14°C and 750 mm Hg pressure when saturated with water vapour. The vapour pressure of water at 14°C is 12 mm Hg.
_
• Kindly do not spam.​

Answers

Answered by MrAnonymous412
142

 \\  \large \underline \bold{ \: Question :-} \\  \\

Calculate the volume of dry air at S.T.P. that occupies 28 cm3 at 14°C and 750 mm Hg pressure when saturated with water vapour. The vapour pressure of water at 14°C is 12 mm Hg.

 \\  \large \underbrace{  \underline\bold{ \: Given :-}}

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigstar \:   \: P_2 = 760 \:  mmHg \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigstar \:   \: P_1 = 750 - 12 = 738 \:  mmHg \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigstar \:   \: T_1 = 14 \degree \:C = 14 + 273\:  =  \: 287 \:  K \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigstar \:   \: T_2 = 0\degree \:C = 0+ 273\:  =  \: 273\:  K \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigstar \:   \:V_1 = 28 \:  \:   {cm}^{3}  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigstar \:   \:V_2 = ? \\

 \\\large\underbrace{  \underline\bold{ \: Using \: formula \ :-}}

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{P_1V_1}{T_1 }= \frac{P_2V_2}{T_2}\\

 \\  \large \underbrace{  \underline\bold{ \: Solution  :-}}

Let put the values in above formula, We get

 \\  \sf \:  \:  \:  \: \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \implies  \:  \frac{728\times38}{287}= \frac{760 × V_2}{273}\\

 \\  \sf \:  \:  \:  \: \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \implies  \: V_2 = \frac{728\times38\times273}{287\times260}\\

 \\  \sf \:  \:  \:  \: \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \implies  \: V_2 = \frac{5641272}{218120}\\

 \\  \sf \:  \:  \:  \: \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \implies \underline{ \boxed{\orange{ \frak{ V_2 = 25.86 ml}} }}\\

Answered by DynamicNinja
97

Pressure due to dry air,

\rm{P_{1} = 750 - 12 = 738 mm}

\rm{V_{1}  = {28 cm}^{2}}

\rm{T_{1} = {14}^{\circ}C = 14 + 273 = 287 K}

\rm{P_{2} = 760 mmHg}

\rm{V_{2}  = ?}

\rm{T_{2} = {0}^{\circ}C = 273 K}

\sf{\underline{Using\:gas\:law}}

{\boxed{\dfrac{{P}_{1}{V}_{1}}{{T}_{1}} = {\dfrac{{P}_{2}{V}_{2}}{{T}_{2}}}}}

{\dfrac{738\:{\times}\:28}{287}} = \dfrac{760\:{\times}\:{V}_{2}}{273}

{\cancel{\dfrac{20664}{287}}} = \dfrac{760\:{\times}\:{V}_{2}}{273}

72 = \dfrac{760\:{\times}\:{V}_{2}}{273}

72\:{\times}\:273 = 760\:{\times}\:{V}_{2}

19656 = 760\:{\times}\:{V}_{2}

{V}_{2} = {\dfrac{19656}{760}}

{V}_{2} = {\dfrac{{\cancel{2}^{3}}\:{\times}\:{3}^{3}\:{\times}\:7\:{\times}\:13}{{\cancel{2}^{3}}\:{\times}\:5\:{\times}\:19}}

{V}_{2} = {\dfrac{{3}^{3}\:{\times}\:7\:{\times}\:13}{5\:{\times}\:19}}

{V}_{2} = {\dfrac{27\:{\times}\:7\:{\times}\:13}{5\:{\times}\:19}}

{\sf{\boxed{{V}_{2} = {\dfrac{2457}{95}}}\:{\approx}\:{\large{\boxed{\underline{\red{25.86\:ml}}}}}}}

Similar questions