Math, asked by talpadadilip417, 1 day ago

 \red{ \boxed{ \tt \red{ find \: integrals : \purple{\int cos(3x) sin(x) } } }}
dont Spam :--
Anyone who gives an irrelevant answer will be reported at that moment.

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm cos3x \: sinx \: dx

On multiply and divide by 2, we get

\rm \:  =  \: \dfrac{1}{2} \displaystyle\int\rm 2 \: cos3x \: sinx \: dx

We know

\boxed{\tt{ 2sinx\: cosy\:  =  \: sin(x + y)  + sin(x - y) \: }}

So, using this identity, we get

\rm \:  =  \: \dfrac{1}{2}\displaystyle\int\rm [sin(x + 3x) +  sin(x - 3x)] \: dx

\rm \:  =  \: \dfrac{1}{2}\displaystyle\int\rm [sin4x +  sin( - 2x)] \: dx

\rm \:  =  \: \dfrac{1}{2}\displaystyle\int\rm [sin6x  -   sin 2x  ] \: dx

We know,

\boxed{\tt{ \displaystyle\int\rm sin(ax + b) \: dx \:  = -   \frac{cos(ax + b)}{a}  + c}}

So, using this identity, we get

\rm \:  =  \: \dfrac{1}{2}\bigg[  -  \dfrac{cos6x}{6}  + \dfrac{cos2x}{2} \bigg] + c

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by OoAryanKingoO78
1

Answer:

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm cos3x \: sinx \: dx

On multiply and divide by 2, we get

\rm \:  =  \: \dfrac{1}{2} \displaystyle\int\rm 2 \: cos3x \: sinx \: dx

We know

\boxed{\tt{ 2sinx\: cosy\:  =  \: sin(x + y)  + sin(x - y) \: }}

So, using this identity, we get

\rm \:  =  \: \dfrac{1}{2}\displaystyle\int\rm [sin(x + 3x) +  sin(x - 3x)] \: dx

\rm \:  =  \: \dfrac{1}{2}\displaystyle\int\rm [sin4x +  sin( - 2x)] \: dx

\rm \:  =  \: \dfrac{1}{2}\displaystyle\int\rm [sin6x  -   sin 2x  ] \: dx

We know,

\boxed{\tt{ \displaystyle\int\rm sin(ax + b) \: dx \:  = -   \frac{cos(ax + b)}{a}  + c}}

So, using this identity, we get

\rm \:  =  \: \dfrac{1}{2}\bigg[  -  \dfrac{cos6x}{6}  + \dfrac{cos2x}{2} \bigg] + c

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

Similar questions