Math, asked by Anonymous, 11 months ago

\red\huge{QUESTION::}

MULTIPLY THE BIONOMIAL

( \frac{3}{4} {a}^{2} + 3 {b}^{2} )and \: 4( {a}^{2} -  \frac{2}{3}  {b}^{2} )

Answers

Answered by BrainlyPopularman
3

Answer:

given \:  \: bionomal \:   \:  =  >  \\  \\ ( \frac{3}{4}  {a}^{2}  + 3 {b}^{2} ) \:  \:  \: and \:  \: 4( {a}^{2}  -  \frac{2}{3}  {b}^{2} ) \\  \\  multiplication \:  \: =  >  \\  \\ 3 {a}^{4}    - 2 {a}^{2}  {b}^{2}  + 12 {a}^{2}  {b}^{2}  - 8 {b}^{4}

Answered by mysticd
1

Answer:

 \red {( \frac{3}{4} {a}^{2} + 3 {b}^{2} )\times \: 4( {a}^{2} - \frac{2}{3} {b}^{2} )}

 \green {= 3a^{4} + 10a^{2}b^{2}-8b^{4} }

Step-by-step explanation:

( \frac{3}{4} {a}^{2} + 3 {b}^{2} )\times \: 4( {a}^{2} - \frac{2}{3} {b}^{2} )

 = 3\left( \frac{a^{2}}{4} + b^{2}\right) \times 4( {a}^{2} - \frac{2}{3} {b}^{2} )

3\left( \frac{a^{2}+4b^{2}}{4} \right) \times 4\left(\frac{3a^{2}-2b^{2}}{3}\right)

 = \frac{3}{4} \times \frac{4}{3} \left(a^{2}+4b^{2}\right)\left(3a^{2}-2b^{2}\right)

 = a^{2}\left(3a^{2}-2b^{2}\right)+4b^{2}\left(3a^{2}-2b^{2}\right)

 \pink { ( By \:distributive \:property)}

 = 3a^{4} - 2a^{2}b^{2} + 12a^{2}b^{2}-8b^{4}

 = 3a^{4} + 10a^{2}b^{2}-8b^{4}

Therefore.,

 \red {( \frac{3}{4} {a}^{2} + 3 {b}^{2} )\times \: 4( {a}^{2} - \frac{2}{3} {b}^{2} )}

 \green {= 3a^{4} + 10a^{2}b^{2}-8b^{4} }

•••♪

Similar questions