Math, asked by Itzcupcakeangel, 6 months ago

{\red{\overline{\green{\underline{\orange{\boxed{\pink{\mathtt{Question}}}}}}}}}

Say whether the following is a quadratic equations

(I)\sf\pink{(x+1)^2=2(x-3)}
(II)\sf\red{(x-2)(x+1)=(x-1)(x+3)}



Don't spam ❌


Answers

Answered by Anonymous
67

{\huge{\underbrace{\rm{Answer\checkmark}}}}

Given -

  • (x+1)² = 2(x-3)
  • (x-2)(x+1) = (x-1)(x+3)

To Find -

  • {\tt{Which\; is \; a \; Quadratic\;equation}}

Solution :

First Equation -

 \rm \:  {(x + 1)}^{2}  = 2(x - 3)

 \mapsto \rm \:  {x}^{2}  + 1 + 2x = 2x - 6

 \mapsto \rm \:  {x}^{2}  + 1 +  { \cancel{2x}} - { \cancel{2x}} + 6 = 0

 \mapsto \rm \:  {x}^{2}  + 7 = 0

 \boxed{ \tt{ \star \: YES \: it \: is \: a \: quadratic \: eq}}

_________________________

Second Equation -

 \rm \: (x - 2)(x + 1) = (x - 1)(x + 3)

 \mapsto \rm \:  {x}^{2}  + x - 2x - 2 =  {x}^{2}  + 3x - x - 3

 \mapsto \rm \:  {x}^{2}  - x - 2  =   {x}^{2}  + 2x - 3

 \mapsto \rm \:  \cancel{ {x}^{2}} - x - 2 -  \cancel{ {x}^{2}  } - 2x + 3 = 0

 \mapsto \rm \:  - 3x + 1 = 0

 \boxed{ {\star \: }{ \tt{NO \: it \: is \: not \: a \: quadratic \: equation}}}

_________________________

☑️ Quadratic Equations are in the form of :

\boxed{ \rm{a {x}^{2}  + bx + c}}

In which ,

 \rm \:  a ≠ 0

_________________________

Answered by Itzfairyprincess
28

{\red{\overline{\green{\underline{\orange{\boxed{\pink{\mathtt{Answer}}}}}}}}}

\sf\blue{x+1)^2=2(x-3)}

\sf\blue{\pink\implies\frac{x}{2}+2x+1=2x-6}

\sf\blue{\red\implies\frac{x}{2}+7=0}

\sf\red{It\:is\:the\:form\:of\:the\form\:\frac{ax}{2}+bx+c=o.}

Hence,the given equation is a quadratic equation .

\sf\red{(x-2)(x+1)=(x-1)(x+3)}

\sf\blue{\pink\implies\frac{x}{2}-x-2=\frac{x}{2}+2x-3}

\sf\blue{\red\implies\:3x-1=0}

\sf\red{It\:is\not\:the\: \:form \:of\:the\form\:\frac{ax}{2}+bx+c=o.}

Hence,the given equation is not a quadratic equation .

Similar questions