Math, asked by Xxxxyjfhjitd, 1 year ago


{\red{\underline{  \:  \: Question:- }}}
 \tt \: In  \: figure, a  \: square \:  OABC \:  is \\   \tt inscribed  \: in \:  a \:  quadrant  \: OPBQ. \\  \tt  If  \: OA=20 \:  cm,  \: find  \: the  \\  \tt area \:  of \:  the  \: shaded \:  region. \\ \  \textless \ br /\  \textgreater \  \tt(Use \:  π=3.14)
 <marquee > No   spam ❌❌

Attachments:

Answers

Answered by Anonymous
163

 {\underline{\underline{\purple{Solution.}}}}

 \sf Each \: side \: of \: the \: square \: OABC

 \:  \:  \:  \:  \:  \textbf = \:  20 \: cm

 \sf By \: Pythagoras \: Theorem

 \:  \:  \:  \:  \rm \: OB {}^{2}  = OA {}^{2}  + (AB) {}^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm = (20) {}^{2}  + (20) {}^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \rm = 400 + 400 = 800

 \therefore \:  \:  \:  \:  \:  \sf \: OB =  \sqrt{800} =   \sqrt{400 \times 2 \: }

 \:  \:  \:  \:  \:  \:  \rm = 20 \sqrt{2 \ \: } cm

 \sf \: i.e.,   \:   \:  \:  \:  \:  \:  \: radius \: of \: the \: circle = 20 \sqrt{2 \: }  \: cm

 \rm Area \: of \: the \: shaded \: region

 \:  \:  \:  \:  \:  \sf = Area \: of \: the \: quadrant \: OPBQ \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - Area \: of \: the \: square \: OABC

 \rm =  \:  \frac{90°}{360°}\pi(20 \sqrt{2) {}^{2} }  - 20 \times 20 \\

 \:  \:  \:  \:  \:  \rm = \:  \:  200\pi - 400

 \:  \:  \:   \:  \: \:  \rm =  \:  \:  \: 200 \times 3.14 - 400

 \:  \:  \:  \:  \:  \:  \:  \rm =  \:  \:  \:  \: 628 - 400

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \red{ = 228 \: cm {}^{2} }

Attachments:
Answered by Anonymous
6

\huge\underline\red{Given}

OABC is a square

OA = 20cm

\bold\green{NOTE:-}

\textbf{Each side of square is equal}

\textbf{Each angle of square is 90°}

\huge\underline\red{Formula}\huge\underline\red{used}

(hypotenuse)²= (perpendicular)²+(base)²

Area of square = side×side

Area of sector = πr²×/360°

\huge\underline\red{Solution}

\textbf{OABC is a square}

\textbf{By Pythagoras theorem}

\bold{(OB)^2\:=\:(OA)^2\:(AB)^2}

\bold{OB^2\:=(20)^2\:+\:(20)^2}

\bold{OB^2\:=\:400\:+\:400}

OB = 800

\bold{OB\:=\:20\:\sqrt{2}\:cm}

So, radius of sector = 202cm

________________________________

\textbf{Area of sector OPBQO}

πr²×/360°

\bold{3.14} × 20√2 × 20√2 × \large\frac{90}{360}

3.14 × 800 × \large\frac{1}{4}

3.14 × 200

628cm²

________________________________

\textbf{Area of square OABC}

= side × side

= 20 × 20

= 400cm²

_______________________________

\textbf{Area of shaded region}

= 628 - 400

= 228cm²

Attachments:
Similar questions