Math, asked by BrainlyElon, 2 months ago

\\ \rm \clubsuit\ \huge{Hola\ Brainlians\ !}\\
Find the Taylor series generated by the function f(x) = \rm \dfrac{1}{x^2} at x = 1
\\ \rm \spadesuit\ \orange{Best\ of\ luck\ Guys\ !}\\

Answers

Answered by BrainlyIAS
19

Question :

Find the Taylor series generated by the function f(x) = \sf  \tiny{\dfrac{1}{x^2}} at x = 1 .

Solution :

Given f(x) = \sf  \tiny{\dfrac{1}{x^2}} , a = 1

The Taylor series generated by f(x) at x = a is given by ,

\bullet\ \; \displaystyle \sf \sum \limits_{k=0}^{\infty} \dfrac{f^{(k)}(a)}{k!}(x-a)^k

We have ,

\bullet\ \; \sf f(x) = \dfrac{1}{x^2} =(-1)^0 \dfrac{1!}{x^{0+2}}

\to \sf f'(x)=- \dfrac{2}{x^3} = (-1)^1 \dfrac{2!}{x^{1+2}}

\to \sf f''(x)=\dfrac{6}{x^4} = (-1)^2 \dfrac{3!}{x^{2+2}}

\to \sf f'''(x)=- \dfrac{24}{x^5} = (-1)^3 \dfrac{4!}{x^{3+2}}

\to \sf f^{IV}(x) =\dfrac{120}{x^6} = (-1)^4 \dfrac{5!}{x^{4+2}}

. . .

. .

\leadsto \sf  f^{(k)}(x) = (-1)^k \dfrac{(k+1)!}{x^{(k+2)}}

So ,

\mapsto \sf f^{(k)}(1) = (-1)^k (k+1)!

\mapsto \sf \dfrac{f^{(k)}(1)}{k!}= (-1)^k (k+1)

Therefore , the Taylor series generated by f(x) = \sf \tiny{\dfrac{1}{x^2}} at x = 1 is ,

\to \displaystyle \sf \sum \limits_{k=0}^{\infty} \dfrac{f^{(k)}(1)}{k!}(x-1)^k

\displaystyle \sf \to \sum \limits_{k=0}^{\infty} (-1)^k (k+1)(x-1)^k

\\\pink{\leadsto \sf 1-2(x-1)+3(x-1)^2-4(x-1)^3+\ .\ .\ .}\\

Answered by mathdude500
7

Given Question :-

Find the Taylor series generated by the function

 f(x) = \rm \dfrac{1}{x^2}  \: at  \: x \:  = \:  1

Solution :-

f(x) = \rm \dfrac{1}{x^2} -  - (1)

 \tt :  \implies \:  \boxed{ \pink{ \tt \: f(1) = 1}}

On differentiating w. r. t. x, we get

 \tt :  \implies \: f'(x) \:  =  \:  - \dfrac{2}{ {x}^{3} }  -  - (2)

 \tt :  \implies \:   \boxed{\pink{ \tt \: f'(1) \:  =  \:  - 2}}

Now, on differentiating w.r.t. x, equation (2), we get

 \tt :  \implies \: f''(x) = \dfrac{( - 2)( - 3)}{ {x}^{4} }  = \dfrac{6}{ {x}^{4} }  -  - (3)

 \tt :  \implies \:  \boxed{ \pink{ \tt \: f''(1) = 6}}

Now, on differentiating w. r. t. x, equation (3), we get

 \tt :  \implies \: f'''(x) \:  =  \: \dfrac{(6)( - 4)}{ {x}^{5} }  =  - \dfrac{24}{ {x}^{5} }  -  - (4)

 \tt :  \implies \:  \boxed{ \pink{ \tt \: f'''(1) =  - 24}}

Now, on differentiating w. r. t. x, equation (4), we get

 \tt :  \implies \: f''''(x) \:  = \dfrac{( - 24)( - 5)}{ {x}^{6} }  = \dfrac{120}{ {x}^{6} }

 \tt :  \implies \:  \boxed{ \pink{ \tt \: f''''(1) = 120}}

Therefore,

By Taylor Series,

 \rm \: f(x) = f(a) + f'(a)(x - a) +  \frac{f''(a)}{2!}  {(x - a)}^{2}  +  \frac{f'''(a)}{3!}  {(x - a)}^{3}  +  \frac{f''''(a)}{4!}  {(x - a)}^{4}  + ..

 \rm \: f(x) = f(1) + f'(1)(x - 1) +  \frac{f''(1)}{2!}  {(x - 1)}^{2}  +  \frac{f'''(1)}{3!}  {(x - 1)}^{3}  +  \frac{f''''(1)}{4!}  {(x - 1)}^{4}  + ..

 \rm \: \dfrac{1}{ {x}^{2} }  = 1 + ( - 2)(x - 1) +  \frac{6}{2}  {(x - 1)}^{2}  +  \frac{( - 24)}{6}  {(x - 1)}^{3}  +  \frac{120}{24}  {(x - 1) }^{4}  + ..

 \rm \: \dfrac{1}{ {x}^{2} }  = 1 - 2(x - 1) + 3 {(x - 1)}^{2}  - 4 {(x - 1)}^{3}  + 5 {(x - 1)}^{4}  + ..

Similar questions