Math, asked by Ashrabxa, 3 months ago

\rm{Find \: the \: value \: of :}
\rm{ \sqrt{9 - 2 \sqrt{3} - 2 \sqrt{5} + 2 \sqrt{15} } }

Answers

Answered by ImSuperHero
1

 \underline{ \underline{ \sf{ \maltese \:Question }}} :

\rm{Find \: the \: value \: of :}\rm{ \sqrt{9 - 2 \sqrt{3} - 2 \sqrt{5} + 2 \sqrt{15} } }

 \underline{ \underline{ \sf{ \maltese \:Answer }}} :

 \\  \mathtt{ Let : \:  \:  } \sqrt{9 - 2 \sqrt{3} - 2 \sqrt{5}  + 2 \sqrt{15} }  =   \rm{\sqrt{x}  +  \sqrt{y}   -   \sqrt{z} }

\mathrm \red{S.O.B.S}

 \\  \sf{ \sqrt{9 - 2 \sqrt{3} - 2  \sqrt{5} + 2 \sqrt{15}   }  = x + y + z + 2 \sqrt{xy}  -  2 \sqrt{yz}  - 2 \sqrt{zx}   }

 \\  \rm \red{By  \: comparing \:  we \:  get ;}

 \\ \sf{x + y + z = 9 \: ; \: xy = 15 \: ; \: yz \:  =  \: 5 \: ; \: zx \:  =  \: 3}

 \\  \rm \red{Now : }

 \\  \sf{(xy)(yz)(zx) = (15)(5)(3)} \\

  \sf{ {x}^{2} {y}^{2}  {z}^{2}  = 225}

 \sf{xyz =  \sqrt{225} }

 \boxed{ \sf{xyz = 15}}

Case i :-

 \sf{xyz = 15 \:  \implies \: x =  \frac{15}{yz}  \implies \: x =  \frac{15}{5}  = 3} \\

Case ii :-

 \sf{xyz = 15 \:  \implies \: y =  \frac{15}{xz}  \implies \: y =  \frac{15}{3}  = 5} \\

Case iii :-

 \sf{xyz = 15 \:  \implies \: z =  \frac{15}{xy}  \implies \: z =  \frac{15}{15}  = 1} \\

 \rm \red{From \:  above  \: cases }

 \sqrt{9 - 2 \sqrt{3} - 2 \sqrt{5}  + 2 \sqrt{15} }  =   \rm{\sqrt{3}  +  \sqrt{5}   -  {1} }

Answered by Jaiganesha
0

\rm{Find \: the \: value \: of :}

\rm{ \sqrt{9 - 2 \sqrt{3} - 2 \sqrt{5} + 2 \sqrt{15} } }

Similar questions