Answers
Answered by
35
Solution :
= cot B + cos B = LHS
= cot B + cos B = cos B/sin B
= cos B [1/sin B + 1]
= Cos B [1 + sin B/sin B]
= cos B (1 + sin B)/sin(90° - A)
= cos B(1 + sin B) /cos A
= sin A cos B (1 + sin B)
= RHS
Addition information :
tanø = sinø/cosø
secø = 1/cosø
cotø = 1/tanø = sinø/cosø
1 - tan(ø/2)/1 - tan(ø/2) = ±√1 - sinø/1 + sinø
tan ø/2 = ±√1 - cosø/1 + cosø
Answered by
20
To Prove :-
• cot B + cos B = sec A cos B (1 + sin B)
★ Since, A and B are complementary angles and A + B = 90°,
L.H.S = cot B + cos B
➪ cot (90° - A) + cos (90° - A)
➪ tan A + sin A
➪ (sin A/cos A) + sin A
➪ (sin A + sin A cos A) / cos A
➪ sin A (1 + cos A) / cos A
➪ sec A sin A (1 + cos A)
➪ sec A sin (90° - B) [1 + cos (90° - B)]
➪ sec A cos B (1 + sin B) = R.H.S
More To Know :-
• tan θ = sin θ/ cosθ
• sec θ = 1/cos θ
• cot θ = 1/ tan θ
__________________________
Similar questions