Math, asked by sajan6491, 1 day ago

  \rm If  \: u=sin^{-1}  \: \dfrac{x}{y}  , \: prove \: that  \\  \rm x \frac{ \partial u}{ \partial x}  + y\frac{ \partial u}{ \partial y} = 0

Answers

Answered by mathdude500
16

\large\underline{\sf{Solution-}}

Given function is

\rm \: u=sin^{-1} \: \dfrac{x}{y} \\

can be rewritten as

\rm \: sinu= \: \dfrac{x}{y} \\

can be further rewritten as

\rm \: sinu =  {x}^{0} \times \dfrac{1}{ \:  \:  \:  \: \dfrac{y}{x}  \:  \:  \:  \: }

\rm\implies \:sinu \: is \: a \: homogenous \: function \: of \: degree \: 0

We know, Euler's Theorem,

This theorem states that if u is a homogeneous function of x and y of degree n, then

\boxed{ \rm{ \: x\frac{\partial u}{\partial x} +  y\frac{\partial u}{\partial y} = nu \: }} \\

So, using this, we get

\rm \: \: x\frac{\partial }{\partial x} sinu+  y\frac{\partial }{\partial y}sinu = 0 \times sinu\:  \\

\rm \: \:x(cosu )\frac{\partial u}{\partial x}+ y( cosu)\frac{\partial u}{\partial y} = 0 \:  \\

\rm \: \:cosu \bigg(x\frac{\partial u}{\partial x}+ y\frac{\partial u}{\partial y}\bigg) = 0 \:  \\

\rm\implies \:x\frac{\partial u}{\partial x}+ y\frac{\partial u}{\partial y} = 0 \:  \\

Hence, Proved

\rule{190pt}{2pt}

Additional Information :-

If u is a homogeneous function of x and y of degree n, then

\boxed{ \rm{ \: x\frac{\partial u}{\partial x} +  y\frac{\partial u}{\partial y} = nu \: }} \\

\boxed{ \rm{ \: x\frac{\partial^{2}  u}{\partial  {x}^{2} } +  y\frac{\partial^2u}{\partial x\partial y} = (n - 1)\frac{\partial u}{\partial x}\: }} \\

\boxed{ \rm{ \: y\frac{\partial^{2}  u}{\partial  {y}^{2} } +  x\frac{\partial^2u}{\partial x\partial y} = (n - 1)\frac{\partial u}{\partial y}\: }} \\

\boxed{ \rm{ \: {x}^{2} \frac{ {\partial}^{2} u}{\partial  {x}^{2} } +    {y}^{2} \frac{\partial^{2}  u}{\partial  {y}^{2} } +  2xy\frac{\partial^2u}{\partial x\partial y} = n(n - 1)u\: }} \\

Similar questions