Math, asked by sajan6491, 1 day ago

 \rm If \: {x}^{3} +  {y}^3  -   {x}^3  {y}^{3}  z = 0   , \: find \\  \rm \frac{ \partial z}{\partial x}  \: and \: \frac{\partial z}{\partial  y }  \: when \: x = y = 1

Answers

Answered by mathdude500
19

\large\underline{\sf{Solution-}}

Given function is

\rm \: {x}^{3} + {y}^3 - {x}^3 {y}^{3} z = 0 \\

can be rewritten as

\rm \: {x}^{3} + {y}^3 = {x}^3 {y}^{3} z

\rm \: z = \dfrac{ {x}^{3}  +  {y}^{3} }{ {x}^{3} {y}^{3} }  \\

\rm \: z = \dfrac{ {x}^{3}}{ {x}^{3} {y}^{3} }   + \dfrac{ {y}^{3} }{ {x}^{3}  {y}^{3} } \\

\rm \: z = \dfrac{1}{ {y}^{3} }  + \dfrac{1}{ {x}^{3} }  \\

can be further rewritten as

\rm \: z =  {y}^{ - 3} +  {x}^{ - 3} \\

On differentiating partially w. r. t. x, we get

\rm \: \dfrac{\partial }{\partial x}z \:  =  \: \dfrac{\partial }{\partial x}( {y}^{ - 3} +  {x}^{ - 3}) \\

\rm \: \dfrac{\partial z}{\partial x} = 0 + ( - 3) {x}^{ - 3 - 1}  \\

\rm\implies \:\boxed{ \rm{ \:\dfrac{\partial z}{\partial x} =  - 3 {x}^{ - 4} \: }} \\

So,

\bf\implies \:\dfrac{\partial z}{\partial x}_{(x=1,y=1)} =  - 3 {( - 1)}^{ - 4}  =  - 3 \\

Now, Consider again

\rm \: z =  {y}^{ - 3} +  {x}^{ - 3} \\

On differentiating partially w. r. t. y, we get

\rm \: \dfrac{\partial }{\partial y}z \:  =  \: \dfrac{\partial }{\partial y}( {y}^{ - 3} +  {x}^{ - 3}) \\

\rm \: \dfrac{\partial z}{\partial y} = ( - 3) {y}^{ - 3 - 1}  + 0 \\

\rm\implies \:\boxed{ \rm{ \:\dfrac{\partial z}{\partial y} =  - 3 {y}^{ - 4} \: }} \\

So,

\bf\implies \:\dfrac{\partial z}{\partial y}_{(x=1,y=1)} =  - 3 {( - 1)}^{ - 4}  =  - 3 \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {x}^{n}  & \sf  {nx}^{n - 1}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Answered by ADITYABHAIYT
11

Answer:

Solution

Given function is

x ^ 2 + y ^ 2 - x ^ 3 * y ^ 3 * x = 0

cen be rewritten as

x ^ 2 + y ^ 2 - x ^ 3 * y ^ 2 * y

z = (x ^ 3 + y ^ 3)/(x ^ 3 * y ^ 3)

z - (x ^ 2)/(x ^ 3 * y ^ 3) + (y ^ 3)/(pi ^ 2 * y ^ 3)

x = 1/(y ^ 3) + 1/(x ^ 3)

can be further rewritten as

x = y ^ - 3 + x ^ - 3 On differentiating partialy w.rt. x, we

got partial partial x x= partial partial x (y^ -3 +x^ -4 ).

partial x partial x -0+(-3)x^ -3-1

Rightarrow boxed partial z partial z =-3x^ 4

- partial z partial x (y-1,y-1) --3(-1)^ -4 --3

Now, Consider again

x = y ^ - 2 + x ^ - 3 On differentiating partialy w. r. t. y. we get

partial partial y y- partial partial y (y^ -3 +x^ -3 )

partial x partial y =(-3)x^ -3-1 +0

boxed partial x partial y =-3y^ -4

partial z partial y :=1,y-1) =-3(-1)^ -4 =-3

Similar questions