Math, asked by NikitaSingh10K, 5 days ago


 \rm{If \: x =  \sqrt{1 +  \sqrt{1 +  \sqrt{1 +  \sqrt{1  + } } } }...then,}  \\
\textsf{Find the positive value of x is}

Answers

Answered by ripinpeace
15

 \rm{ x =  \dfrac{3.23}{2}  \:  or \: x =  \dfrac{1 +  \sqrt{5} }{2} }

Step-by-step explanation:

★Given -

  • \rm{ \small\: x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + ...}}}}} \:  \:  \: (1)

To find -

  • \rm{Positive \:    value \:  of  \: x.}

Solution -

 \rm{x  \:  = \sqrt{1 + \sqrt{1 + \sqrt{1 + ...}}}}

 \rm{Putting  \: in  \: (1),}

 \rm{x =  \sqrt{1 + x} }

 \rm{ \small{Now, on  \: squaring  \: both  \: sides  \: we  \: get,}}

  \longmapsto\rm{ {x}^{2}  = x + 1}

  \longmapsto\rm{ {x}^{2}   - x - 1= 0}

 \rm{Where, a = 1 , b = - 1 , c = - 1}

 \rm{D = b² - 4ac\:  (D = discriminant)}

 \longmapsto \rm{D  =  { (- 1)}^{2}  - 4(1)( - 1)}

\longmapsto \rm{D  =  1  + 4}

\longmapsto \rm{D  =  5}

 \rm{ {\large{x}} =  \dfrac{ - b ±   \sqrt{D} }{2a} }

 \longmapsto \rm{{ \large{x} }=  \dfrac{ - ( - 1) ±   \sqrt{5} }{2(1)} }

\longmapsto \rm{{ \large{x} }=  \dfrac{ 1 ±   \sqrt{5} }{2} }

\longmapsto \rm{{ \large{x} }=  \dfrac{ 1  +    \sqrt{5} }{2} } \:  \: ,\rm{{ \large{x} }=  \dfrac{ 1  -    \sqrt{5} }{2} }

 \mapsto \rm{{ \large{x} }=  \dfrac{ 1  +    2.23 }{2} } \:  \: ,\rm{{ \large{x} }=  \dfrac{ 1  -    2.23 }{2} }

 \mapsto \rm{{ \large{x} }=  \dfrac{ 3.23 }{2} } \:  \: ,\rm{{ \large{x} }=  \dfrac{  - 1.23 }{2} }

From (1) we can see that the value of 'x' is inside a root. Hence, the value of 'x' cannot be negative.

 \rm{   {\large{\therefore}} \: x =  \dfrac{3.23}{2}  \:  or \: x =  \dfrac{1 +  \sqrt{5} }{2} }

More to know -

  •  \large(  + )( + )  = ( + )
  • \large(   -  )( + )  = (  - )
  • \large(  + )(  - )  = (  -  )
  • \large(   - )(  - )  = ( + )
Similar questions